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SUMMARY

The patterning of social acoustic signaling at multi-
ple timescales, from day-night rhythms to acoustic
temporal properties, enhances sender-receiver
coupling and reproductive success [1–8]. In diurnal
birds, the nocturnal production of melatonin,
considered the major vertebrate timekeeping hor-
mone [9, 10], suppresses vocal activity but in-
creases song syllable duration over circadian and
millisecond timescales, respectively [11, 12]. Com-
parable studies are lacking for nocturnal verte-
brates, including many teleost fish species that are
also highly vocal during periods of reproduction
[4, 13–20]. Utilizing continuous sound recordings,
light cycle manipulations, hormone implants, and
in situ hybridization, we demonstrate in a noctur-
nally breeding teleost fish that (1) courtship vocali-
zation exhibits an endogenous circadian rhythm
under constant dark conditions that is suppressed
under constant light, (2) exogenous delivery of a
melatonin analog under inhibitory constant light
conditions rescues courtship vocal activity as
well as the duration of single calls, and (3) melatonin
receptor 1b is highly expressed in evolutionarily
conserved neuroendocrine and vocal-acoustic net-
works crucial for patterning reproductive and vocal
behaviors in fishes and tetrapods. Our findings,
together with those in birds, show melatonin’s
remarkable versatility as a timing signal in distantly
related lineages. It exerts opposing effects on
vocalization in nocturnal versus diurnal species at
the circadian timescale but comparable effects at
the finer timescale of acoustic features. We propose
that melatonin’s separable effects at different time-
scales depends on its actions within distinct neural
networks that control circadian rhythms, reproduc-
tion, and vocalization, which may be selected
upon over evolutionary time as dissociable modules
to pattern and coordinate social behaviors.
Current B
RESULTS

Vocal behavior is a prominent component of vertebrate social

communication [21]. Except in birds, few studies have examined

endogenous circadian regulation of daily rhythms in vocalization.

Furthermore, underlying neural and hormone control mecha-

nisms remain largely unexplored in nocturnally active species,

as diurnal birds have been the predominant models for studying

vocalizations.

Robust nocturnal elevation in acoustic signaling is docu-

mented in a number of sonic fish species [15–19], including

the plainfin midshipman (Porichthys notatus) and closely related

toadfishes [20, 22–24]. During the breeding season, nest-

guarding midshipman males produce ‘‘hum’’ vocalizations in

nocturnal choruses (Figure 1A; Movie S1) [20, 22, 25]. Within a

larger repertoire of social context-dependent calls, hums func-

tion during courtship to attract females for spawning, adver-

tising a male’s motivation to reproduce [3, 22]. Hums can last

up to hours per call and are produced repetitively at night by

contracting swim bladder muscles at �100 Hz in 14�C–16�C
seawater (Figure 1A). The temporal features of midshipman

calls are controlled by a neural network whose excitability is

elevated at night, inhibited by constant light, and rescued by

exogenous melatonin [26–30].

By manipulating external light cycles and internal melatonin

levels, we tested the hypothesis that nocturnal fish vocalizations

are under circadian control and are stimulated by melatonin. Our

study addresses the general hypothesis that melatonin conveys

the permissive time period for vocalization irrespective of daily

activity pattern, which to date has been supported by its sup-

pressive effects on singing in diurnal species of birds [8, 11]

(Figure 1B).
Circadian Rhythm in Fish Courtship Vocalization
Hums were continuously recorded from individual males with

sole access to artificial nests in aquaria housed in a tempera-

ture-controlled room (Figure 1C). To test for endogenous circa-

dian rhythmicity, the normal 15:9 hr light:dark (LD) regimes

were changed to constant dark (DD) or constant light (LL)

(Figure 1D).

Midshipman courtship hums exhibited daily rhythms (Fig-

ures 2A–2C) with a period of 23.93 ± 0.05 hr under LD (n =

10; Figure 2C). After removal of environmental cues under
iology 26, 2681–2689, October 10, 2016 ª 2016 Elsevier Ltd. 2681
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Figure 1. Schematics of Midshipman Vocal Behavior, Broad Hypothesis, and Experimental Setup

(A) The courtship vocalizations of male midshipman fish, known as ‘‘hums,’’ are produced almost exclusively at night during the summer breeding season.

Continuous hums can last fromminutes to more than an hour, shown by the 1.85 hr hum recorded from a captive male (blue trace), and are produced repetitively

throughout a night of courtship activity. See also Movie S1.

(B) Levels of melatonin, the predominant time-keeping hormone, typically increase at night in vertebrates regardless of the daily activity pattern (e.g., diurnal

versus nocturnal) of a species.We tested the hypothesis that melatonin stimulates nocturnal vocalization in ourmodel organism, the plainfinmidshipman fish (left;

photo by Margaret A. Marchaterre), opposing its inhibitory action in diurnal songbirds like the zebra finch (right; photo by Nicole M. Baran).

(C) In our captive recording setup, each fish is provided with an artificial nest and is recorded by a hydrophone. Hour-long recordings were continuously written to

a computer each day. The black arrow points to a resident fish under his nest. Note that during the day, fish sometimes expose their eyes to room lighting (white

arrow).

(D) Light and treatment regimes used in this study. In the first experiment, fish were held under normal light:dark (LD) and then constant dark (DD) to test for an

endogenous hum rhythm. In the second experiment, fishwere held first in LD and then transitioned to constant light (LL). On the first day of LL, fish were implanted

with 2-iodomelatonin or vehicle control, or were non-implanted. Duration spent under each light regime is denoted in days (d).
DD, cyclic humming activity persisted and free-ran with a

phase delay (Figures 2A and S1), indicating an endogenous

circadian rhythm [31]. Circadian rhythmicity was confirmed

by correlating each fish’s humming activity with itself (autocor-

relation [32]) at successive 5 min lags, revealing cyclical peaks

in autocorrelation values at periods near 24 hr (Figure 2B).

The endogenous free-running period under DD was 25.0 ±

0.4 (n = 6), significantly longer than the entrained cycle under

LD (t(5) = 3.42, p = 0.019) (Figure 2C). The strength of the free-

running rhythm was significantly weaker under DD than LD,

shown by lower autocorrelation values (t(5) = 6.19, p =

0.0016) (Figure 2D). Unlike under DD, the circadian rhythm

was abolished under LL with no circadian autocorrelation

peaks (Figure 2B). Light regime (LD versus DD) had no effect

on mean duration hummed per day (F(1,191.1) = 0.004, p =

0.95) (Figure 2E), number of hums produced per day

(F(1,191.1) = 0.004, p = 0.95) (Figure 2F), or duration of single

hums (F(1,10) = 0.34, p = 0.57) (Figure 2G), consistent with

our previous study showing no significant effects of DD on

neural excitability of the vocal circuit [30].
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Melatonin Potentiates Nocturnal Fish Courtship
Vocalization
Melatonin is primarily produced by the pineal gland at night,

translating the external light-dark cycle into an internal hormonal

message [9, 10, 33]. Constant light is an effective, non-invasive

method for decreasing melatonin synthesis [33] and suppresses

midshipman vocal circuit excitability [30]. To test the hypothesis

that melatonin stimulates nocturnal vocalization, a group of

fish maintained under LL were implanted with 2-iodomelatonin

(2-IMel), a potent melatonin analog [34]. We predicted that LL

would suppress hum activity and that exogenous melatonin

would rescue it to LD levels.

On the first day of LL, fish were implanted in the abdominal

cavity with 2-IMel (n = 6), implanted with vehicle alone (coconut

oil; n = 6), or non-implanted (n = 2; see Figure 1D and Supple-

mental Experimental Procedures). As predicted, LL suppressed

hum duration in control-implanted and non-implanted fish that

had been humming under LD (Figures 3A and S2A). Implantation

with 2-IMel rescued humming activity under LL (Figures 3A, 3B,

and S2B; Movie S2), supporting the hypothesis that melatonin
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Figure 2. Constant Darkness Reveals Circadian Rhythm of Courtship Vocalization

(A) Left: vocal actogram of one fish. Right: mean hourly hum durations from ten fish. Black bars indicate when hums occurred, dark gray indicates lights-off, and

white indicates lights-on. Light gray bars one day before each constant dark (DD) period indicate that main room lights were turned off and only floodlights

illuminated the tanks.

(B) Example autocorrelation plots used to estimate the period and strength of daily/circadian humming activity under light:dark (LD), DD, and constant light (LL).

Left two panels are autocorrelation plots from the same fish whose vocal actogram is shown in left panel of (A). Red ‘‘x’’s denote peaks (P0 and P2) used to

calculate the period length and strength. No circadian autocorrelation peaks were observed under LL (right panel).

(C) Period length was significantly increased under DD compared to LD. Lines connect data from the same fish.

(D) Strength of the free-running circadian rhythm was weaker compared to LD.

(E and F) Mean daily hum duration (E) and number of hums produced per day (F) were not significantly different across LD versus DD.

(G) The duration of single hums (pooled from six fish) also did not differ between LD and DD. Numbers under violin plots denote number of hums. Dark middle

lines in boxplots are medians, box boundaries represent the first and third quartiles, and whiskers extend to a maximum of 1.5*(third quartile � first quartile)

beyond the box.

*p = 0.019; **p = 0.0016. See also Figure S1.

Current Biology 26, 2681–2689, October 10, 2016 2683



A

B C

D E F G

Figure 3. Melatonin Action Rescues Nocturnal Courtship Vocal Activity under Constant Light

(A) Actograms of humming activity of a control (left) and a 2-iodomelatonin (2-IMel)-implanted fish (right). Black bars indicate when hums occurred, dark gray

indicates lights-off, and white indicates lights-on.

(B) Hum duration per day aligned to the first day of constant light (LL) and implantation (shown here as 0). Mean daily hum duration is shown as colored lines, and

shaded regions represent SEM. Humming activity was inhibited by LL in control fish but was rescued in 2-IMel-implanted fish (see also C). All main effects were

significant except for light regime.

(C) Mean daily hum duration of each fish by light regime and treatment.

(D) 2-IMel fish hummed for a significantly longer duration than control fish under the entire LL period.

(E) 2-IMel fish showed shorter latency to resume humming after implantation than control fish.

(F) The duration of single hums decreased under LL in control fish but was maintained in 2-IMel fish. Numbers below violin plots denote number of hums in each

group pooled from control (n = 8) and 2-IMel (n = 6) fish. Dark middle lines in boxplots are medians, box boundaries represent the first and third quartiles, and

whiskers extend to a maximum of 1.5*(third quartile � first quartile) beyond the box.

(G) Median duration of single hums for each fish by light regime and treatment.

*p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S2 and Movie S2.
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Figure 4. Melatonin Receptor 1b Expression Supports Melatonin Action in Neuroendocrine and Vocal Circuits

(A) Schematic of the side view of a midshipman brain, showing the distribution of melatonin receptor 1b (Mel1b) mRNA (purple) within critical nodes of the

descending vocal-acoustic network.

(B and C) Example transverse sections of reference brain (cresyl violet stain) showing cytoarchitecture (left) and Mel1b expression (right) at forebrain (B) and

midbrain (C) levels. Note differences in magnification. Abbreviations: ac, anterior commissure; AT, anterior tuberal nucleus; Dl, dorsolateral zone of dorsal

telencephalon; Dm, medial zone of dorsal telencephalon; ll, lateral lemniscus; nMLF, nucleus of the medial longitudinal fasciculus; PAG, periaqueductal gray; PL,

paralemniscal midbrain tegmentum; POA-AH, preoptic area-anterior hypothalamus; PPa, anterior parvocellular preoptic nucleus of the POA; PTT, paratoral

midbrain tegmentum; Te, optic tectum; TS, torus semicircularis; TSd, deep layer of TS; TSp, periventricular layer of TS; Vc, central nucleus of the ventral

telencephalon; Vd, dorsal nucleus of ventral telencephalon; VMN, vocal motor nucleus; VPN, vocal pacemaker nucleus; VPP, vocal pre-pacemaker nucleus; Vs,

supracommissural nucleus of V; vT, ventral tuberal nucleus.
potentiates nocturnal vocalization. There were significant fixed

effects of hormone treatment (2-IMel versus control; F(1,12.78) =

16.12; p = 0.0015), days relative to implant nested within light

regime (F(2,211.1) = 3.59; p = 0.029), and treatment 3 light regime

interaction (F(1,212.9) = 19.37, p < 0.0001) (Figure 3B), but not

light regime alone (F(1,210.8) = 1.23, p = 0.27). Figure 3C summa-

rizes mean daily hum duration across light regimes for each

fish, showing a decrease in control-implanted but increase in

2-IMel-implanted fish under LL relative to LD. The total duration

hummed under the entire LL period was significantly higher in

2-IMel-implanted fish compared to control-implanted and non-

implanted fish (t(12) = 4.25, p = 0.0011) (Figure 3D). Additionally,

the latency to resume humming after implantation was signifi-

cantly shorter in 2-IMel-implanted fish (t(10) = 5.86, p = 0.0002)

(Figure 3E). Thus, exogenous melatonin treatment rescued vocal

suppression by LL.

Constant light also inhibited duration of single hums in control-

implanted but not 2-IMel-implanted fish. There were significant

effects of light regime (F(1,4778) = 70.62, p < 0.0001) and light

regime 3 treatment interaction (F(1,4778) = 128.25, p < 0.0001).

Figure 3F shows the distribution of hum durations from all indi-

viduals, while Figure 3G showsmedian humdurations by individ-

uals across light regimes separated by treatment. The number of

hums produced per day, however, did not differ across treat-

ment (F(1,12) = 3.15, p = 0.10) or light regime (F(1,12) = 0.58, p =

0.46) (data not shown).
Although 2-IMel maintained and even increased humming ac-

tivity compared to controls under LL in fish that were previously

humming under LD conditions (Figure 3), it was not sufficient

to induce humming in fish that had not hummed in LD conditions

in this environment (n = 3), suggesting a permissive role. In

summary, constant darkness (but not constant light) revealed

an endogenously generated circadian rhythm controlling the

nocturnal courtship vocalization of midshipman fish, while con-

stant light suppression of hum duration was rescued by exoge-

nous melatonin at both daily and single-call timescales.

Melatonin Receptor 1b mRNA Is Expressed in
Neuroendocrine and Vocal-Acoustic Circuits
We mapped the distribution of melatonin receptor 1B (Mel1b)

mRNA in the midshipman brain to identify targets of melatonin

action. Teleost fish possess four subtypes of G protein-coupled

melatonin receptors, including Mel1b [35, 36]. We focused on

Mel1b because blocking this receptor decreased neural excit-

ability in the midshipman vocal network [30] and song length in

a songbird [37]. Mel1b is also the only melatonin receptor

subtype highly expressed in the song control system of birds

[38, 39].

In situ hybridization localized midshipman-specific Mel1b

mRNA to neuroendocrine regions and multiple nodes of the

vocal-acoustic network (summarized in Figure 4A). Mel1b was

robustly expressed in the highly conserved forebrain preoptic
Current Biology 26, 2681–2689, October 10, 2016 2685



area-anterior hypothalamus (POA-AH; see Figures 4A and 4B),

which controls vertebrate social and reproductive behaviors

[40–42], including vocalization in midshipman and other toad-

fishes [43, 44]. Robust labeling was also observed in contiguous

midbrain regions that comprise a vocal initiation center (PL, PTT,

PAG; Figures 4A and 4C) that receives POA input, like compara-

ble regions in tetrapods [30, 44–47]. Lastly, strong labeling was

found in regions connected to the POA-AH and/or vocal

midbrain [44–46]. This included periventricular and deep layers

of the midbrain auditory center, the torus semicircularis (TSp,

TSd, TS; Figures 4A and 4C), as well as ventral telencephalic

nuclei such as the supracommisural nucleus (Vs; Figure 4B), a

vocally active site [43, 44] that has been compared to parts of

the amygdala important for social behavior [41, 48, 49].

These results provide relevant support for melatonin’s direct

action in vocal circuitry. A more complete analysis of Mel1b’s

robust but discrete expression throughout the brain will be pre-

sented elsewhere. This includes olfactory, lateral line, visual, and

auditory (see above) pathways, implicating a role for melatonin in

modulating multisensory inputs essential to the appropriate

timing of behavior.

DISCUSSION

Our results demonstrate in a nocturnal and highly vocal teleost

fish that (1) courtship vocalization exhibits an endogenous circa-

dian rhythm under constant darkness, (2) melatonin rescues

courtship vocal activity and single call duration under constant

light, and (3) melatonin receptor is highly expressed within evolu-

tionarily conserved brain regions that pattern social, reproduc-

tive, and vocal behaviors in fish and tetrapods.

Circadian Vocal Rhythms in Vertebrates
Few studies have tested circadian control of daily rhythmic

vertebrate vocal behaviors under constant conditions or their

regulation by melatonin, with the majority of studies in birds

[11, 12] and none to our knowledge in mammals aside from

sparse reports of diel vocal rhythms [50, 51]. A circadian rhythm

in the pre-dawn crowing of roosters was recently demonstrated,

but melatonin modulation was not investigated [52]. The impor-

tance of circadian vocal rhythms for reproductive success was

causally demonstrated in a songbird, where a delay in dawn

chorus singing induced by melatonin reducedmale reproductive

success [8].

Teleost fish exhibit noisy free-running circadian rhythms (mainly

of locomotion and feeding) that dampen over days to weeks with

high individual variability in strength [53], similar to midshipman

vocal rhythms (Figures 2A–2D). Furthermore, LL masked and/or

abolished circadian vocal rhythms in midshipman fish, an effect

also observed in zebra finches (Taeniopygia guttata) [12]. Our

study extends findings in birds to a distant vertebrate group,

demonstrating that an endogenous circadian oscillator drives

the overt daily rhythm in fish courtship vocalization.

Melatonin Exerts Opposing Effects on Vocalization over
Daily Timescales
Our results support the hypothesis that melatonin conveys the

appropriate time for vocalization in diurnal and nocturnal species

by suppressing and permitting vocalization, respectively. Song-
2686 Current Biology 26, 2681–2689, October 10, 2016
birds are vocally active during the day whenmelatonin is low and

breed during long days when the duration of nocturnal melatonin

release is relatively brief, leading to the prediction that melatonin

inhibits vocalization. Indeed, songbirds sing throughout periods

of constant light [12], and song and call activity entrain to times of

day without melatonin treatment in pinealectomized zebra

finches housed under constant dim light [11]. Furthermore, mela-

tonin has been shown to decrease the isolation distress calls of

both chickens [54] and ewes [55]. Taking these findings together,

sufficient evidence from distantly related diurnal species sug-

gests that melatonin inhibits vocalization.

For nocturnally active vertebrates that are also long-day

breeders, it is more difficult to predict whether melatonin would

be stimulatory or inhibitory. Some lineages of nocturnally active

birds (e.g., owls) have partially atrophied pineal glands and low,

arrhythmic plasma melatonin levels [56–58], suggesting an

escape from melatonin’s suppressive effects. However, this

phenomenon is not widespread in birds [56]. Furthermore,

robust pineal melatonin rhythms have been reported in nocturnal

fish species [59]. The present study shows a robust and permis-

sive role for melatonin in controlling vocalization in a nocturnally

active fish.

Melatonin has also been shown to act in opposing directions

to regulate general activity levels and arousal in nocturnal versus

diurnal mammals, e.g., locomotor activity in nocturnal rats (e.g.,

[60]) versus sleep duration, efficiency, and onset latency [61] in

humans. Melatonin inhibits locomotor activity in diurnal birds

[62] and fish [63, 64], while one study in nocturnal fish reported

increased locomotor activity during the daytime following mela-

tonin injection [64].

Melatonin Exerts Comparable Effects on Vocalization
over Shorter Timescales
Surprisingly, comparable with our data showing LL suppression

of single hum duration, LL also shortened single song motifs and

syllables in zebra finches, an effect recapitulated by pinealec-

tomy [12]. Like in midshipman (Figures 3F and 3G), exogenous

melatonin in zebra finches rescued song motif duration under

these inhibitory conditions [12]. In Japanese quail (Coturnix

japonica), crows produced at night were longer than those pro-

duced during the day [65] andwere significantly shortened under

LL [12], though the effect of melatonin modulation remains to be

tested.

Taken together, evidence suggests that regardless of a spe-

cies’ daily activity pattern, melatonin lengthens the duration of

single calls, an elemental component of acoustic signals [21].

More generally, melatonin could regulate social signals in other

modalities for which timing at both circadian and finer timescales

is important. A recent study of gymnotid fish shows that the

melatonin antagonist luzindole inhibits the nocturnal rise in the

rate of electric organ discharges [66].

Light and Melatonin Modulation of Vocal Neural Circuits
Several lines of evidence from both birds and midshipman

fish suggest that environmental light information can be relayed

by melatonin directly to the brain’s vocal control circuitry, whose

output patterns the temporal properties of vocalizations [37–39,

67–72]. Continuous or 14 hr daily melatonin treatment in song-

birds mimics winter-like short days by decreasing song control



nuclei volumes [69, 70]. Melatonin application to brain slices

leads to decreased levels of spontaneous activity in the forebrain

song nucleus, robustus arcopallialis [37]. In midshipman, in vivo

measurements of vocal circuit neural excitability increase at

night and decrease during the day, likely driving the dramatic

daily rhythms in vocal behavior [29]. Constant light suppression

of neural excitability in the midshipman vocal circuit is rescued

by 2-IMel implantation, while pharmacological blockade of

Mel1b inhibits the network’s excitability [30], thus providing a

neural mechanism underlying the behavioral results presented

here. Lastly, expression of melatonin receptors, including

Mel1bmRNA, in the vocal network of bothmidshipman (Figure 4)

and songbirds [37–39, 67–72] likely mediates melatonin’s modu-

latory actions in these circuits.

Conclusions
Our results demonstrate that vocalizations in fish, as in birds,

follow a circadian rhythm and are sensitive to melatonin. Mela-

tonin is a versatile circadian timing signal, conveying the permis-

sive time period for vocalization in an opposing manner to permit

vocalization in nocturnal fish and suppress it in diurnal birds.

Elucidating the mechanism (or mechanisms) responsible for in-

terpreting the melatonin signal in opposing ways in diurnal and

nocturnal species is an important avenue for future study.

Furthermore, investigating whether melatonin permits vocaliza-

tion in other nocturnal vertebrates will help clarify the phyloge-

netic history of melatonin regulation of vocalization.

Melatonin lengthens the duration of single calls in both fish

and birds, indicating an ability to pattern vocalization at the

millisecond-to-minute timescale. Thus, in addition to daily activ-

ity patterns, melatonin can also regulate the finer temporal

patterning of individual behavioral events. Finally, robust mela-

tonin receptor expression in neuroendocrine and vocal networks

suggests that melatonin’s timescale-dependent effects are

executed by discrete and evolutionarily conserved neural path-

ways. We propose that melatonin control of vocalization over

vastly different timescales is a trait widely shared by ectothermic

and endothermic vertebrates.

EXPERIMENTAL PROCEDURES

For more detailed methods, see Supplemental Experimental Procedures.

Animals

Nest-guarding male midshipman fish were housed in large aquaria, with each

having sole access to an artificial nest (Figure 1C; Movie S2). All procedures

were approved by the Cornell Institutional Animal Care and Use Committee.

Sound Recording and Analyses

Hums from each fish were recorded continuously and written to disk every

hour. Raw sound files were analyzed in Raven Pro 1.5; downstream analyses

utilized Python.

In Situ Hybridization

Our in situ hybridization protocol largely followed previously reported studies

[73] and used midshipman-specific mRNA probes.

Statistics

Linear mixed models used fish as a random variable and appropriate fixed ef-

fects for each experiment (e.g., light regime, hormone treatment, and their

interactions).
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4. Ruppé, L., Clément, G., Herrel, A., Ballesta, L., Décamps, T., Kéver, L.,
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