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Abstract

A shared variable is an abstraction of persistent interprocessor communications.
Processors execute read and write operations, often concurrently, on shared variables
to exchange information among themselves. The behavior of operation executions is
required to be “consistent” for effective interprocessor communications. Consequently, a
consistency specification of a shared variable describes some guarantees on the behavior
of the operation executions. Shared variables of different consistencies have been defined
in the literature, and are categorized in hierarchies.

In this paper, we deal with implementations of higher-level shared variables from
lower-level ones. We synthesize a set of axioms based on space-time points (and coin-
cidences), that must be satisfied by the lowest level variables. These axioms help us to
analyze and argue about plausible implementations. We then discuss an optimization
of the write operation execution to improve performance, and its effect on the consis-
tency guarantees of an implementation. We show that (i) this optimization is possible
for sequentially consistent variables but not for linearizable variables, and hence (ii)
linearizable variables cannot be wait-freely implemented from sequentially consistent
variables alone.

Key Words: Atomicity, axiom, causality, concurrency, consistency, defining condition,
illegality, implementation, impossibility proof, linear time reference, linear extension, lin-
earizability, nonatomic operation execution, optimization, partial order, physics, relativity,
shared variable, sequential consistency, space-time coincidence, strong consistency, system
execution, wait-freedom.

1 Introduction

We consider a computing system that consists of a finite collection of n > 1 asynchronous
and autonomous sequential processors1, P1, · · · , Pn. They communicate among themselves
by reading and modifying shared variables. (They have no other means of communications

∗This research is supported in part by the Natural Sciences and Engineering Research Council of Canada
Individual Research Grant OGP0003182.

†Associated to Basic Foundation, Vivekananda Nagar Main Road, Madhyamgram, Kolkata 700130, India.
1A processor, here, corresponds to a single thread of execution flow in the computing system.
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among themselves.) They are driven by their local control programs. Each processor fetches
one instruction from its control program, and executes the instruction to the completion
before it fetches the next instruction.2 Executions of instructions may involve accessing
shared variables.

A shared variable is an abstraction of persistent interprocessor communications. Per-
sistence here means that the same information can be retrieved from the variable multiple
times (without any upper bound) until the information is changed explicitly. Shared vari-
ables are logical units of reference by the processors. Each shared variable has a unique
name and a type. The type defines a finite domain of values that the variable can assume,
the interface operations, and the consistency semantics of the operations.

An instance of an execution of any operation on a shared variable will be referred
to as an operation execution. By an execution of an operation on a shared variable, we
mean a sequence of two events: (1) the executing processor issues the execution request
with appropriate arguments to the variable’s interface and then (2) the processor gets a
completion report from the interface.3 The former is called an invocation or request event,
and the latter a response or reply event. By laws of Physics, the former event precedes
(in real time) the latter event at the processor, and the time interval, in any linear time
reference, between these two events is unknown but non-zero, positive (however small),
and finite.4 (Operation executions are not instantaneous, that is, not atomic.) The actual
execution of the request is carried out by some agent(s) on behalf of the requesting processor.
(The agent might be the processor itself in a new supervising role.)

For the purpose of this study, we assume that shared variables support only two interface
operations: read and write. A processor, in a write operation execution (Write, for short)
of a shared variable, sends a value from the value domain of the variable to the interface,
and receives an acknowledgment back from the interface. In a read operation execution
(Read, for short), it sends a read request to the interface, and receives a value back from the
interface. The corresponding values are said to be ‘associated’ with the respective operation
executions. A Write (respectively, Read) is considered to be complete when the processor
receives the acknowledgment (respectively, value) from the interface. We call such shared
variables Read/Write variables; unless stated otherwise, all variables of our investigation
are Read/Write variables.

In the present study, we consider a computing system containing only a single shared
variable. Every processor executes its permitted operations on the variable sequentially,
as directed by its control program. However, operation executions of different processors
may overlap, and may affect the behavior of one another. The speeds at which the proces-
sors execute their operations are unknown. That is, the time gap between two operation
executions of a processor is unknown but non-zero, positive, and finite.5

When all operation executions of a shared variable execution are sequential, that is
without overlap in real time, analyzing their behavior is straightforward: if all Reads return

2We do not address the issues of “out of order” executions of operations by a single processor.
3The issuing processor is assumed to be blocked until it gets the completion report from the interface.

That is, the execution history of each processor is sequential, starting with a request event and alternating
with a report event.

4For the sake of convenience, we are assuming finite time interval to indicate that each operation execution
terminates.

5For the sake of convenience, we are assuming here processors are non terminating, and they keep on
executing Read/Write operations.
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values from their respective immediately preceding Writes in the sequence, we say they are
legal Reads and the shared variable execution is also legal. Defining what are legal Reads is
at the core of shared variable specifications, especially in the presence of concurrent opera-
tion executions. Even though operations on a shared variable may be executed concurrently
by different processors, the behavior of the Reads must be predictable, i.e., must satisfy
some consistency guarantees for effective interprocessor communications. Two factors are
predominantly used to determine the level of consistency guarantees a shared variable pro-
vides. One is the values associated with the operation executions. We can observe these
values, i.e., what values Writes write and what values Reads report. Whether or not the
values reported by Reads satisfy our expectation is decided by the other factor: the history
of operation executions, that is, the order relation among the operation executions. For a
given execution of a shared variable, we cannot change the values associated with the Reads
and Writes, but we can define the order relation variously [10]. Differently defined relations
can order the same two operation executions differently. For instance, on one extreme, the
order relation can be defined empty; the execution is then considered to be legal if each
Read returns a(ny) value from the domain of the variable. Of course, a shared variable
whose Reads return any values from its domain will be useless for application development
and would not satisfy our expectations. On the other extreme, the order relation can be
the global time order of all operation executions and the values correspond to those in
a serial order of all the operation executions extending their global time order such that
each Read returns the value written by the most recent Write preceding the Read in the
serial order; the serial order is a legal linearization of the given execution. A wide range
of consistencies between these two extremes can be associated with executions of shared
variables, by defining different order relations and weakening the definition of read legality.
This is also observed independently by Higham et al. [13]; they say “the notion of validity
is independent of the computation”. The computation is what actually happens in reality,
but the validity is how we perceive the computation.

Many shared memory consistencies have been reported in the literature. They include
linearizability [11, 24], sequential consistency [15], casual consistency [3], processor con-
sistency [8], PRAM [21], cache consistency [8], partial/total store order [13], etc. These
specifications, of course, transcend to shared variable specifications as a special case where
the shared memory holds only one shared variable. In [10], we particularly study specifica-
tions of shared variables and characterize them based on five types of read-illegalities, and
present a hierarchy of shared variables. This paper takes [10] one step further: we study
plausible implementations of shared variables.

Implementing higher-level shared variables from lower-level ones is of fundamental im-
portance for any hierarchical system building. Conceptually, the 1-writer 1-reader safe/regular
bits, defined in [18], are the most fundamental building blocks of system development. (We
overlook in this paper the debates about whether such bits can be fabricated in modern
hardware.) For the sake of convenience, these bits are also referred to as the primitive
variables in this paper. They are more like 2-processor unidirectional pipes. Only these bits
are provided at the lowest level (called primitive level) for interprocessor communications
within a single chip. They are used to construct higher-level shared variables, which are
used to construct further higher-level variables, and so on.

Note that an execution of an implementation of a higher-level shared variable induces
an execution on each individual primitive variable. Given an order relation for operation
executions of an execution of any shared variable at any (primitive or higher) level, it
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is relatively easy to analyze the behavior of the operation executions and determine the
consistencies of the execution. It is relatively hard to correlate order relations between two
levels of an execution. In this paper, we bring out some fundamental issues relating to
the consistency guarantees a shared variable implementation may ensure. We substantiate
these issues with ideas from computer hardware and advanced Physics, and provide some
philosophical discussions.

We note that an execution of a shared variable implementation may be observed at
least at two different levels: the interface and the primitive levels. (The interface is what
users of the shared variable see; the primitive level is hidden from them.) The execution
observed at the primitive level will be referred as the ‘real’ execution in this paper, and
the one observed at the interface level is called the ‘abstract’ execution. Thus, an abstract
execution is implemented by a real one, and we need to determine the consistencies of the
abstract executions to study implementations. We envisage two issues: (i) the consistency
guarantees the real executions provide at the primitive level; and (ii) the correlation of the
real executions to abstract ones. We discuss these issues in this paper.

In the primitive level, we have the operation executions and their associated values, but
how do we define an order relation among them? We take a cue from certain principles
of special relativity theory of Physics and postulate that we need time references (for both
processors and primitive variables) to define order relation in the primitive level. There
is no single global time reference that can be used by all parties involved in a distributed
computation. So, we assume the existence of many private linear time references in the
system. Furthermore, we postulate that, not just the concept of time but the space-time
points and coincidences are the most fundamental concept in analyzing implementations at
the primitive level. We propose axioms that capture this concept.

One goal of any practical implementation is achieving high system performance, that is,
speeding up the executions of Reads and Writes. For this purpose, the operation executions
need to be optimized somehow. However, such optimizations may affect the consistency
guarantees of the implementation. We discuss one simple optimization and how it affects
the consistency guarantees; in particular, we show that this optimization can be used to
guarantee sequential consistency but not linearizability. Using this property, we prove
that linearizable variables cannot be wait-freely implemented from sequentially consistent
variables alone.

The rest of this paper is organized as follows. Section 2 presents basic preliminaries
that are required for presenting our work. This section is a review from literature. Sec-
tion 3 discusses the issues involved in implementations of shared variables. The issues are
(i) formulating system executions at the primitive level, (ii) correlating system executions at
two levels where orderings between operation executions are defined differently, and (iii) ef-
fects of operation execution optimizations. We also present two impossibility results in this
section. Section 4 concludes the paper.

2 Preliminaries

An abstract mathematical structure 〈S,−→, -〉 is called a system execution if S is a finite
or countably infinite set, and the two relations −→ and - on S satisfy the following
Axioms A1–A5 [16, 18]. (Here, A, B, C, D are elements of S.)
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(A1) The relation −→ is an irreflexive partial order.

(A2) If A −→ B, then A - B and B 6 - A.

(A3) If A −→ B - C or A - B −→ C, then A - C.

(A4) If A −→ B - C −→ D, then A −→ D.

(A5) For any A, the set of all B such that A 6−→ B is finite.

Anger [4] later augmented the axiomatic system of Lamport by adding the following two
axioms6 to get models of system executions:

(A6) A - A.

(A7) If A - B −→ C - D, then A - D.

Note that all the symbols used in the above seven axioms are uninterpreted, and they can
stand for any thing we could imagine. For example, 〈N , <,≤〉, where N is the set of natural
numbers, is a system execution as it satisfies all the seven axioms. For another example,
a real execution of a shared variable can be modeled as a system execution 〈S,−→, -〉,
where S constitutes all operation executions on the variable and the partial order −→ is
derived using a defining condition and - is derived using the above mentioned seven
axioms. (The derived relation −→ is referred to as a defining relation in [10]. As mentioned
previously, for a given execution of a shared variable, we can define many −→ relations
and hence have many system executions for the same shared variable execution to study its
various consistencies.) Whatever be the way, when we transform a shared variable execution
into a system execution, it becomes a little easier to analyze the behavior of the operation
executions and determining consistencies of the shared variable execution.

The relation −→ is normally referred to as “precedes” or “happens before” or “(strong)
causal connection”, and - as “may affect” or “weak connection”. They are also referred
to, simply, as precedence relations. For two operation executions O1 and O2, if O1 −→ O2

we also say the value or effect of O1 is available or traceable to O2; it does not matter
whether O2 does not trace or ignores O1. In a system execution, two operation executions
are said to be concurrent if they are not related by the −→ relation. Note that the above
axioms permit that concurrent operation executions may or may not be related by -. For
example, 〈{A, B}, φ, {A - A, B - B}〉 is a valid system execution as it satisfies all the
seven axioms; A and B are neither strongly nor weakly related to one another. An abstract
system is defined to be a set of system executions [18].

The above seven axioms take care of the syntax of system executions, that is, how
operation executions (in a system execution) are relatively ordered with each other. They
however do not correlate operation executions from semantics point of view. The syntax is
one factor in consistency, and helps us in setting up a structure on operation executions. The
−→ and - relations and the seven axioms exhibit cause-effect relationships on operation
executions, i.e., the execution flow in system executions. They are truly independent of
the behavior exhibited by operation executions. The other factor is the values associated

6Axiom A7 is originally proposed by Abraham and Ben-David in [1] (as reported in [6]). Lamport did
not assume Axioms A6–A7 to prove his register implementations, but used A7 in [19].
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with operation executions to relate Reads with Writes. Thus, for consistency specifications,
we need to associate some meaning to the elements in each system execution. Therefore,
we need to augment the above mentioned seven axioms by imposing further restrictions
on the structure 〈S,−→, -〉, and/or by including new axioms for operation executions.
For example, to strengthen the structure, we can add the global-time axiom: for all A, B

in S, if A 6−→ B, then B - A; and by Axiom A2, S has A - B or B - A or both.
For Read/Write variables, we partition elements in S into two disjoint sets, Read set and
Write set. We implicitly assume the existence of such partitions, and we would not mention
them in the rest of the paper. That is, we can identify each element in S as Read or Write
(not both). Lamport defines six additional axioms in [18] to assign semantics to operation
executions toward specifying 1-writer multireader safe, regular, and atomic variables. For
the sake of completeness, we state the six axioms below, even though some are informal.
For formal discussions, readers are advised to read his paper [18]. Again, note that he states
these axioms for a single 1-writer shared variable.

(B1) All Writes are totally ordered by −→, and the very first Write causally precedes all
other operation executions.

(B2) For any Read R and Write W to the same variable, either R - W , or W - R, or
both.

(B3) A Read always returns a value from the domain of the variable.

(B4) (safe) A Read not concurrent with any Write returns the most recently written value.

(B5) (regular) A Read returns the most recently written value, or the value of one of the
concurrent Writes.

(B6) (atomic) Each Read is effectively not concurrent with any Write and returns the most
recently written value preceding it.

These axioms are not sufficient for multiwriter shared variables. We need to augment
or rewrite these six axioms to accommodate multiwriter variables in his framework. In [10],
we presented one possible rewrite. There, to characterize multiwriter multireader shared
variables, we identify five orthogonal criteria, all in terms of the Writes that the Reads read
values from. They are called read-illegalities. For completeness we present a review of [10]
here.

We note that, to have a legal serial extension of the −→ relation, a given system execution
〈S,−→, -, π〉7 cannot have the following situation for any Read R(W1):

O(W1) −→ O′(W2) −→ R(W1),

where W1 6= W2 are Writes, and each of O and O′ may indicate either a Read or a Write.8

If there is such a situation, we say R(W1) is illegal with respect to −→. We say R(W1) is:

• ww-illegal if O indicates a Write and O′ a Write,

7We assume the existence of a ‘reading mapping’ function π from the Read set to the Write set associating
each Read R to the Write π(R) whose value R returns; for convenience and succinctness, we denote this
by notation R(W ), where W is π(R). Note that we must have π(R) - R. In the sequel, we sometimes
denote system executions by 〈S,−→, - , π〉, whose consistency semantics we want to determine.

8In this notation, W (w) is the same as w, when w is a Write.
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• wr-illegal if O indicates a Write and O′ a Read,

• rw-illegal if O indicates a Read and O′ a Write, and

• rr-illegal if O indicates a Read and O′ a Read.

These four illegalities involving only the −→ relation form four criteria. The fifth one is the
new-old inversion or new-old-illegality that involves two different Writes and two different
Reads:

• no-illegal9: for two different Writes W1 and W2 and two different Reads R and R′, we
have W (W1) −→ W (W2) and R(W2) −→ R′(W1).

We [10] classify all system executions 〈S,−→, -, π〉 into different categories C satisfy-
ing different read constraints. Let ww denote that ww-illegality is allowed, and ww denote
that ww-illegality is not allowed; we use similar notations for the other illegalities. The
class C(ww, wr, rw, rr, no) will consist of those system executions where any read-illegalities
could occur. The class C(ww, wr, rw, rr, no) will consist of those system executions which
have none of these read-illegalities. These are called causal executions in [10].

Given a system execution 〈S,−→, -, π〉, we [10] define three relations on the Writes,
induced by Reads as follows. Here, W1 6= W2 are Writes and R 6= R′ are Reads.

• W (W1) −→rr W (W2) if R(W1) −→ R′(W2),

• W (W1) −→rw W (W2) if R(W1) −→ W (W2), and

• W (W1) −→wr W (W2) if W (W1) −→ R(W2).

We [10] define an augmented relation −→e on S as (−→ ∪ −→rr ∪ −→rw ∪ −→wr)
∗, and

call it the exclusion closure of −→. A system execution 〈S,−→, -, π〉 is called an atomic
execution if −→e is a partial order and there are no read-illegalities with respect to the
augmented relation −→e. That is, 〈S,−→, -, π〉 is an atomic execution if 〈S,−→e, -

e〉
is a causal execution.10 (One may note that ‘atomicity’ is a generic term here and atomicity
of an execution depends on how we define the order relations. Atomic executions have
stronger consistencies than non atomic ones for the same order relation.) If the execution
satisfies a defining condition C, it is called C-atomic. Linearizability and sequentially
consistency are both atomic, but their defining conditions are different. Both are, in theory,
strong consistencies.

In summary, for a given real execution of a shared variable, we first define a syntax,
aka, structure 〈S,−→, -, π〉 out of the given execution by using a defining condition
and Axioms A1–A7, and then use further axioms to assign semantics to the structure and
classify the given execution of the shared variable. The foremost challenge is deriving system
executions from real executions of implementations (of shared variables), which is the topic
of the next section.

9Read as en-o illegal.
10Here -

e is equal to −→e ∪ - .
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3 System implementation

As mentioned previously, shared variables can be organized into a hierarchy based on their
consistencies. Higher-level shared variables can be implemented from lower-level ones. Any
axiomatic system that helps us to specifying consistencies of shared variables must also
have mechanisms to help us in determining the types of these implemented shared variables.
Many consistency specifications in the literature can be stated in terms of the absence of
various read-illegalities in system executions (see [10]). Thus, the foremost task is to derive
higher-level system executions from lower-level ones. Only then we can use an axiomatic
system to determine the type of the implemented shared variable by analyzing what read-
illegalities are present or absent in the derived higher-level system executions.

Practical systems are implemented in multiple levels. Thus, we may need to analyze
executions of an implementation at various levels of abstractions. As stated earlier, at the
most fundamental level, a computing system is nothing but an interconnection of 1-writer 1-
reader bits (primitive variables). Each primitive variable is written by a preassigned agent,
and read by a preassigned different agent. An execution of an implementation (of a higher-
level variable) induces, at the primitive level, one execution of each primitive variable.
Each primitive variable by itself is a system and has its own interfacing read and write
operations. The induced execution of each primitive variable contains all Reads and Writes
on the variable. And, these induced executions (of primitive variables) are independent of
one another, because they are not aware of one another. Thereby, each induced execution
can be analyzed independently. It satisfies its own consistency semantics, whatever it might
be.

In the sequel, by a real execution of an implementation we mean the collection of the
induced executions, one for each primitive variable observed at the primitive level. To de-
termine the higher-level consistency ensured by the implementation, we have two tasks at
hand for each real execution of the implementation: (i) from the given real execution we
need to form abstract individual primitive system executions and (ii) from these abstract
primitive system executions, we must be able to derive abstract higher-level system execu-
tions along with the two precedence relations and the reading-mapping function. Only then
we can use an axiomatic system to determine the strength of the implementation, that is,
the type of the constructed higher-level shared variable. Several interesting issues arise in
the derivation process. We discuss them in the rest of this section. Section 3.1 is a review
from the literature.

3.1 Implementation relation

Let I be an implementation of a higher-level shared variable V that employs a set v of
primitive variables, and let E be a real execution of I. Let S be the set consisting of all
higher-level operation executions (Reads and Writes, observed at the interface of V ) in E.
Let P be the set of all primitive operation executions observed at the primitive level for
E. Given two system executions 〈P,−→P , -

P〉 and 〈S,−→S , -

S〉, when can we say
that the former one implements the latter? We give the definition of implementation by
Lamport [18] below in terms of higher-level view and induced precedence relation.

A set S is a higher-level view [18] of a set P if (1) each element of S is a finite, non
empty set of elements of P, and (2) each element of P belongs to a finite, non-zero number
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of elements of S.

Let O and O′ be two operation executions in S. As mentioned previously, there are
many ways one can define the two precedence relations between O and O′. Lamport [18]
defines two induced relations

∗
−→P and ∗

-

P between O and O′ as follows:

O
∗

−→P O′ ≡ ∀o ∈ O,∀o′ ∈ O′ : o −→P o′, and
O ∗

-

P O′ ≡ ∃o ∈ O : ∃o′ ∈ O′ : o -

P o′ or o = o′.

Then, 〈S,
∗

−→P , ∗
-

P〉 represents a higher-level system execution of I, induced by P.

Lamport [18] says a (primitive) system execution 〈P,−→P , -

P〉 implements a (higher-
level) system execution 〈S,−→S , -

S〉 if (1) S is a higher-level view of P and (2)
∗

−→P ⊆
−→S . (We say an implementation relationship exists between the two system executions.)
We note that the closer

∗
−→P comes to −→S (that is, the fewer elements (−→S −

∗
−→P)

has), the better is the relationship between P and S and the implementation comes closer
to our expectation. When −→S is equal to

∗
−→P , it is a perfect or exact implementation;

otherwise, it is a restrictive or inexact implementation. When
∗

−→P ⊂ −→S , Lamport [18]
says 〈S,−→S , -

S〉 is a pretend system execution relative to 〈P,−→P , -

P〉.

In reality, as said before, a system may be constructed in many levels, instead of just
two levels. We can use the above definition of implementation recursively for any two
consecutive levels and see if the lowest-level system implements the highest-level one.

3.2 Primitive system executions

The above definition of implementation (from [18]) helps us in defining a higher-level sys-
tem execution from a lower-level one via induced relations and pretension. For this, we
need to begin with a known system execution at the primitive level of system building,
and gradually derive higher-level system executions until we reach the topmost level. The
most intriguing question we face in reality is this: we definitely can observe what primitive
operation executions and their associated values are, but how do we define the two rela-
tions −→ and - on primitive operation executions? What defining conditions do the
precedence relations satisfy at the primitive level, for a single primitive variable? Can we
define the precedence relations arbitrarily? The above mentioned Axioms A1–A7 do help
us in deriving primitive system executions, but they are not really sufficient. We ought to
assume some ordering on primitive operation executions, and the assumptions must reflect
our expectation. The most obvious and natural choice before us seems to be the physical
time for this purpose. For asynchronous computing systems, it is tacitly assumed that there
is no concept of global time reference(s) in the system. Then, what should be a basis for
ordering primitive operation executions? We try to answer it by reviewing the literature.

Lamport in [18] postulated Axioms B1–B6 (see Section 2) to define 1-writer safe, regular,
and atomic variables. We are particularly concerned with the Axiom B2 that correlates
operation executions of any two processors (one reader and the other writer): For any Read
R and Write W to the same variable (at any level in shared variable hierarchy), R - W ,
or W - R, or both. What is the rationale behind this axiom? As mentioned previously,
this axiom holds for any system execution that satisfies the global-time axiom, but may not
hold in general. (Axiom B2 is not equivalent to the global-time axiom. For example, it does
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not correlate operation executions of two reader processors.) It also means that Lamport
assumed the existence of some sort of weak interactions between any Read and any Write
of every shared variable (at any level of system building).

Lamport justifies Axiom B2 in [17] using four dimensional space-time model from
Physics. In the rest of this sub-subsection, we take a cue from Physics and claim that
the global-time axiom is needed at the primitive level to derive system executions from real
executions of a primitive variable, and there does not seem to exist any other alternatives
before us. That is, Axiom B2 must hold at the primitive level.

We believe that to define the two precedence relations on primitive operation executions
we need external time reference frames for different observers of the real execution. Many
consistency specifications in the literature we know of are defined in terms of execution
histories. An execution history is a (finite or countably infinite) sequence of invocation and
response events. From the linear execution history, partial orders are defined on operation
executions, and analyzed based on the axioms of some axiomatic system. There are excep-
tions though. For example, Higham et al. [13] assume a computation to be a set of sequences
of operation executions, one sequence for each processor. They do not however assume the
same (i.e., sequences of operation executions) for each shared variable. Our concern here
is the assumption of linear execution histories, and not the axiomatic systems being used
for the analysis. (We can use any axiomatic system of our preference only after setting up
order relations among operation executions and defining their reading-mapping function.)
Although a global time reference is not mentioned explicitly, every sequence connotes a
discrete global time reference, in which events are “moments of time”. This is perhaps first
observed by Lamport in [14]. He mentions that the concept of time is vital to our sense
of thinking, understanding, and reasoning. At the fundamental depth (deep in the shared
variable implementation), we may need to reason about interactions of primitive operation
executions based only on time. We strongly believe that without the concept of some time
references at the primitive level, it is not possible to derive the two precedence relations on
primitive operation executions.11 However, there is no single global time reference that can
be used by all parties involved in a distributed computation. So, we assume the existence
of many private, and not global, linear time references in the systems. Each time refer-
ence continuously increases with the physical time (as defined by physicists, based on the
constancy of the velocity of light). For our purpose, a time reference never runs backward
and it increases monotonically; time references, however, can vary their rates of increase
arbitrarily and need not be running synchronously in lock-steps. The time references (ac-
tually, space-time points) are used only to derive causality relationship among operation
executions.

We assume that every processor has its own private time reference which is not accessible
to other processors. For any (higher-level) operation executions O and O′ of processor Pi,
we say that O precedes O′ in the processor order12 denoted O −→i O′, if O completes before
O′ starts in the private time reference of Pi. It is a total order. All local observers residing
at Pi will see this order. Here is our first axiom.

(T1) Each processor Pi has its own private time reference Ti which is not used by others.

11As we will see shortly time references are not sufficient, we need space-time points and coincidences as
defined by Physicists.

12Program order and processor order are the same in our study as the processors do not execute program
instructions out of order.
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Each operation execution of Pi spans a non-zero finite interval in Ti and the intervals
do not overlap with each other in the time reference. The time reference is used only
to determine individual processor order −→i. From this we can derive -

i using
Axioms A1–A7, and define 〈Si,−→i, -

i〉 as a system execution, where Si is the set
of all (higher-level) operation executions of processor Pi.

13 That is, for every processor
Pi, 〈Si,−→i, -

i〉 is a system execution, and it does satisfy the global-time axiom.

We also assume the existence of a separate (independent) time reference Tx for each
primitive shared variable x, for the following philosophical reason. Every operation execu-
tion on a primitive variable x will span a non-zero finite time interval in Tx; for the sake
of convenience, a single space-time point is considered a non-zero interval. Two operation
executions o and o′ on x are said to overlap iff they have intersecting time intervals (or
time moments) in the time reference Tx.14 This is called the principle of the invariance
of “coincidence of time and space” in Physics: if one (inertial) observer sees two events
occur at the same space and at the same time, then all (inertial) observers in our universe
will see the same coincidence of the two events but they may see at different times (of
their local time references).15 That is, all observers in the universe will agree that there
is a space-time coincidence on shared variable x, but they may disagree on the time and
they may see it at different (their own) local times. (Said differently, although there is no
agreement about time among observers, there is definitely an agreement on a coincidence.
If there is no coincidence of two operation executions of x, then the operation executions
are not concurrent.) Such coincidence events can have an immediate (and direct) impact on
each other, and hence we assume that they do affect one another. Said differently, two con-
current operation executions can affect one another if and only if they have some common
space-time points, aka, coincidences. Thereby, if the two primitive operation executions
happen in two different spaces at the same time (whoever’s time that is), they cannot di-
rectly affect one another. This is another law of nature. If they occur at the same space
but at different times, then also there are no space-time coincidences but the latter one can
sense or trace the effect of the former one because the space (aka, primitive variable) is
assumed to be a persistent interprocessor communication medium (unless some later space-
time coincidences on the same space have annulled the effect). (Note that this statement is
not valid for non-persistent, aka, transient communications. Traceability of information is
what makes persistent variables useful in computer programs.) A primitive shared variable
represents a (persistent) space component here. Thus, the other component of space-time,
namely, time reference is vital to analyze executions of the primitive variable. The time
reference is independent of those of processors, and is solely used to determine different

13For this case, to obtain -
i from −→i, first apply Axioms A6 and A2 and then Axioms A3 and A7.

As −→i is linear, -
i is in fact redundant.

14Although they often say an operation execution O1 of processor P1 and an O2 of P2 overlap, they
actually mean O1 and O2 overlap on some common variable x, but they never say whose time is used for
space-time coincidences. The time is actually of x, and not of P1 nor of P2. For example, when we say two
processors are in the same critical section simultaneously, we mean simultaneously by the time reference of
the critical section and not those of the processors. As the space-time events produced by the processors
coincides, every observer in the universe will be able to see this coincidence, and say the processors are in
the critical section simultaneously. Without the assumption of the time reference of the critical section, how
would we formulate the mutual exclusion property?

15Actually, in Physics, different observers may see the same coincidence in different space points. The
variables (i.e., objects in our study) are relatively stationary with respect to one another, that is, they do
not change their positions in the space with respect to time. Thus, different observers will see the same
coincidence in the same variable, but may see it at different (their own local) times.
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orderings among operation executions of the primitive shared variable. We represent this
fact by weak object order o -

xo′ and o′ -

xo, where o and o′ have common space-time
points, aka, coincidences; that is, they may affect the behavior of each other irrespective of
the kind of operation executions o and o′ are. Similarly, we define o −→x o′, called strong
object order, if all space-time points of o precede those of o′ (i.e., o is completed before o′

starts and there are no common space-time coincidences) in the time reference Tx. Now,
we can complete the content of the two precedence relations −→x and -

x with the help
of the aforementioned Axioms A1–A7 to encompass all primitive operation executions of x

into a single “abstract system execution” of x. All local observers residing at x will see the
same relations −→x and -

x. Then, 〈Px,−→x, -

x〉 becomes a system execution, where
Px is the set of all operation executions on x, that does satisfy the global-time axiom. We
now state the axioms for primitive shared variables.

(T2) Each primitive shared variable x has its own private time reference Tx which is not
used by others. Each operation execution on x spans a non-zero finite interval in Tx.
The time reference is used solely to determine the object orders −→x and -

x, and
primitive system executions 〈Px,−→x, -

x〉.

(T3) Operation executions of each primitive variable x comply with the time reference Tx.
Let o and o′ (whatever be their sources) be two operation executions on x. Then,
o -

xo′, or o′ -

xo, or both. That is, primitive system executions satisfy the global-
time axiom.

Axiom T3 implies that Lamport’s Axiom B2 holds for all primitive variables solely due
to the Physics principle of space-time coincidence and the definition of - ; we believe there
are no other fundamental reasons behind it.16 Primitive-object order relation is fundamental
in our study and we now know how to construct individual system executions of a primitive
variable from its real executions.

A system with only one primitive variable is uninteresting. As mentioned previously,
in practical systems, a higher-level variable is implemented from many primitive variables.
Things become more complicated to handle when we have many independent time refer-
ences in the same system. Each primitive variable has its own space-time characteristics,
i.e., induced object order. We would need to integrate individual object orders (of all prim-
itive variables) for the integrity of the entire primitive execution (similar to logical clocks
defined in [14, 22, 23]) by setting up order relationships between operation executions of
different primitive variables. Note that, for an execution of an implementation, we do know
which primitive operation executions are parts of which higher-level operation executions.
Additional ordering on primitive operation executions on different primitive variables is
determined based on the order of their executions by the higher-level operation executions.
For example, if a processor Pi first executes o on x and then o′ on y, then o −→i o′. We
can now define 〈P,−→P , -

P〉 using −→x, -

x, and −→i, where P contains all primitive
operation executions and satisfies Axioms A1–A7.

The above defined 〈P,−→P , -

P〉 is good enough for us. If we assume the global-
time axiom for the integrated system, we can have more structures in the primitive system

16Axiom T3 may appear to be weaker than Axiom B2 because here, in theory, both o and o′ can be Reads,
but it is not because, all primitive variables being 1-reader, two Reads can never be concurrent on the same
primitive variable. Thus, T3 and B2 are the same at the primitive level. That is, though nowhere stated
explicitly, B2 in disguise is the global-time axiom at the primitive level!
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execution. The following three axioms are assumed to correlate the private time references
of all processors and all primitive variables.

(T4) There is one and only one global linear time reference Tg accessible to all global
observers. It is not accessible to any processors or shared variables.

(T5) As per Physics, nothing in our universe moves faster than light.17 So, no (inertial)
observer will see an operation finishing its execution before it is even initiated for
execution.18 More precisely, two events occurring in some linear order in any private
time reference will be seen by all global observers in the same linear order though
the time gap between the events may vary from one observer to another. This is
also known as the principle of causality in Physics. Thereby, a global observer should
be able to see the same causal orderings of operation executions (and space-time
coincidences) of every private time reference. Therefore, we assume that each private
time reference has an order preserving embedding (similarity mapping) in the global
time reference Tg. These are bi-continuous functions from private time references to
the global time reference.19

(T6) The similarity mappings in T5 must be mutually consistent with reality and our ex-
pectation. Let SMi be similarity mappings for processor Pi, and SMx be for primitive
variable x. Each operation execution Oi of Pi, by Axiom T1, spans a time interval in
Ti. If we apply the SMi on this time interval, we get a time interval in Tg. Without
loss of generality, we use the same notation SMi to represent this mapping of Oi to
the time interval in Tg. Thereby, SMi(Oi) is a set of points (time moments) in Tg.
Similarly, for operation execution ox on x, SMx(ox) is a set of points in Tg.

1. Suppose Oi is a higher-level operation execution of Pi, and ox ∈ Oi. Then, it
must be the case SMx(ox) ⊆ SMi(Oi), that is, all mapped points of ox are also
mapped points of Oi.

2. For two primitive operation executions ox and oy on two different primitive vari-
ables x and y, respectively, if processor Pi executes both of them, first ox to
completion and next oy (that is, ox −→i oy), then SMx(ox) ≺ SMy(oy), that is,
all mapped points of ox precede all mapped points of oy. (Note that no local
observer will be able to see or derive this relation across two primitive shared
variables.)

These time axioms are very intuitive. For an execution of an implementation, by the
above time axioms, we can define −→P and -

P on primitive operation executions across
all primitive variables as follows. They definitely include the object orders −→x and -

x,
respectively, and may have some more orderings among operation executions, as defined
below. For any two operation executions ox and oy, on two different primitive variables x and

17Even if this turns out not to be the case, we would not debate about the fastest element in the universe
in this paper.

18This is akin to the assumption that a message can only be received after it has been sent [14].
19Similarity mapping is also called homeomorphism by mathematicians. Bi-continuous functions are those

continuous functions whose inverses are also continuous. For our case, the causal ordering of two events in
one private time reference will preserve the same ordering in the global time reference by the similarity
mapping. And hence, whatever causal orderings local observers can see will also be seen by all global
observers.
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y, respectively, we define ox −→P oy if SMx(ox) ≺ SMy(oy), and ox
-

Poy if ox −→P oy

or SMx(ox) intersects SMy(oy). We now use Axioms A1–A7 to make 〈P,−→P , -

P〉 a
system execution, where P is the set of all primitive operation executions (of all primitive
variables). (It is interesting to note that −→P on the set of primitive operation executions
may not be equal to the global-time relation −→gt on the same set of operation executions.)

We note that different sets of mutually consistent similarity mappings (of Axiom T5)
could define different primitive system executions for the same real execution of the imple-
mentation. But, they all preserve individual object orders −→x and -

x and processor
orders −→i. These derived precedence relations −→P differ from each other only in what is
called the “relativity of simultaneity”, again from Physics: if one observer A says that two
events in two different spaces happen at the same time (by A’s own time reference), another
observer B may disagree based on B’s own time reference. From these primitive system exe-
cutions, we may derive higher-level system executions using the concept of higher-level view
and induced precedence relations of Lamport [18]. We say an implementation implements a
higher-level system, if for each real execution of the implementation, there exists a (at least
one) set of mutually consistent similarity mappings such that the derived primitive system
execution from the similarity mappings implements a system execution of the higher-level
system. Otherwise, the implementation is not correct.

All the previous time axioms are oriented toward ordering of operation executions for
defining primitive system executions. That is, they are used to define the syntax of primitive
operation executions. Unfortunately, as mentioned previously, ordering is not everything in
studying system executions. It is one factor for specifying consistency. The other factor is
the values associated with operation executions. Given a real execution, we know what val-
ues are associated with operation executions of both the higher-level variable and lower-level
primitive variables. We must have some minimum consistency guarantee at the primitive
level to make primitive variables worthwhile. Without this minimum consistency, primitive
variables are not useful to us. Note that though the primitive-object orders are induced by
higher-level operation executions, the semantics of primitive operations are ensured by the
primitive variables themselves. The primitive variables must provide a consistency guaran-
tee that does not violate our intuition. We expect that they would provide a bare minimum
guarantee to retain the latest value in the absence of new Writes (aka, persistent interpro-
cessor communications at the primitive level), for otherwise the variables cannot be used
for effective system building. Each Read always gets the most recently written value or one
of overlapping Writes.20 For the purpose of interprocessor communications, each primitive
variable must have at least two states, and hence all primitive variables are assumed to
be boolean. As mentioned previously that primitive system executions cannot satisfy any
defining condition other than T3 (or B2), so we postulate that all primitive shared variables
are of the same type, i.e., multiple different classes of primitive variables do not exist. We
now state the axiom of semantics of primitive variables.

(T7) Executions of each primitive variable x are in category C(−→x)(ww). That is, prim-
itive executions are regular (Cf. Axioms B1–B5) relative to their respective time ref-
erences.

That is, each primitive shared variable is 1-writer 1-reader regular, and it represents a

20A primitive variable cannot toss a coin nor play a dice to return values for Reads. Moreover, it cannot
remember its past history, that is, the previously written values. In addition, Reads do not alter the
information content of the variable.
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persistent medium (for two boolean values, namely true and false or 1 and 0) between a
writer and a reader.

At the primitive level, we can have only 1-writer 1-reader boolean regular variables
that satisfy only the above mentioned time axioms (aka, the defining conditions at the
primitive level). At the higher levels, we can implement multiwriter multireader multivalued
variables that satisfy different defining conditions. We discuss some issues involved in those
implementations in the next subsection.

3.3 Optimization issues

One goal of any practical implementation of higher-level shared variable is achieving high
performance for higher-level operation executions. We here measure the performance by
the amount of time processors wait or spend for higher-level operation executions to com-
plete. The lesser the waiting time, the better is the performance. Thereby, to improve the
performance of higher-level operation executions, we need to cut short the waiting time of
processors (between the invocation event and the corresponding response event), and there
are no other alternatives. That is, if possible, an operation invocation may be delivered its
response by the shared variable interface even when all its primitive operation executions
are not complete; the remaining part of the higher-level operation execution will be carried
out asynchronously by some agents on behalf of the invoking processor.

The example of an execution of a shared variable, shown in Figure 1 in the global-time
setup, will be used to study the impact of optimizations on consistencies. Every higher-
level operation execution is associated with two lines in the figure. The lower (solid) lines
represent the executions at the primitive level. If we consider an induced higher-level view
of this execution, we have only W1

∗
−→ R; we do not have W2

∗
−→ R; the induced system

execution does not violate any read-illegality with respect to this
∗

−→ relation. Then, (by
Proposition 3.3 of [10]) the execution in the figure is atomic with respect to this defining
relation

∗
−→. Here, as each higher-level operation execution encompasses all its primitive

operation executions, we can have, by the time axioms, a set of mutually consistent similarity
mappings where we have −→gt equal to

∗
−→ for this induced system execution. So, the

execution is linearizable.

Now, the upper (dashed) lines in the Figure 1 show the case where higher-level Writes
are optimized: Writes W1 and W2 make early returns without completing all primitive
operation executions. We now have W1 −→gt W2 −→gt R at the interface level and the
system execution is not linearizable because it violates ww-legality with respect to −→gt.
We specifically note that higher-level operation executions do not encompass all of their
primitive operation executions any longer, and this causes violations of linearizability. We
also note that, due to optimizations, Axiom T6.(1) may not be valid any more. The
higher-level system execution (based on some defining conditions) may have more order
relationships than the induced

∗
−→ relation and thereby, violate some consistency conditions.

It is interesting to note that both the (optimized and non-optimized) executions in the figure
are sequentially consistent.

For the optimized part of Figure 1, can we say that higher-level operation executions are
higher-level views of primitive operation executions? (1) Suppose no. Then, higher-level
operation executions collectively may not encompass all of primitive operation executions,
and, we cannot use Lamport’s definition of system implementation any more. (2) Suppose
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yes. Then, the implementation becomes more and more pretending (i.e., inexact). In
addition, for two causally related higher-level operation executions, O1 −→gt O2, not all
lower-level operation executions of O1 precede those of O2. In fact, if they access the same
primitive variable x, the primitive operation executions on x from O2 may precede those on
x from O1. Thus, as mentioned previously, Axiom T6.(1) may not be valid any more. Thus,
in either alternative, we have a dilemma about the definition of system implementation.

Some of the questions that arise at this point are the following. How do we relate
the primitive system execution to the higher-level system execution when the Writes are
optimized? How do we define the implementation relationships between the primitive and
higher levels? What is the relationship between the defining conditions in both levels? How
do we implement an optimized higher-level system execution? We do not know answers to
these questions as of now.

P1 : W1(v1)

Actual duration

P2 : W2(v2)

Actual duration

P3 : R(v1)

Figure 1: A typical high performance execution of a shared variable V .

3.4 Shared variable implementation

As mentioned previously, each processor executes its operations sequentially in the order
specified by its control program. It does not start executing the next operation until it re-
ceives a response to the previous request. It is shown by various researchers that linearizable
Read/Write variables can be constructed from the most fundamental 1-writer 1-reader safe
bits in a wait-free manner [2, 9, 18, 20, 26]. Such constructions implement a READ function
and a WRITE procedure for read and write operations, respectively. (These routines, in
fact, constitute shared variable interface.) Li, Tromp, and Vitányi [20] present constructions
of multiwriter multireader linearizable variables from 1-writer 1-reader linearizable variables
and also from 1-writer multireader linearizable variables. They also present constructions
of 1-writer multireader linearizable variables from 1-writer 1-reader linearizable variables.
Abraham [2] presents a construction of multiwriter multireader linearizable variables from
1-writer multireader linearizable variables. Lamport [18] shows how to construct 1-writer
1-reader linearizable and 1-writer multireader regular variables from 1-writer 1-reader safe
bits. Haldar and Vidyasankar [9] present a construction of 1-writer multireader lineariz-
able variable from 1-writer multireader regular variables. Thus, we can implement wait-free
Read/Write linearizable shared variables from safe bits.

Let us look at one implementation-specific characteristic of all these constructions. In
these constructions, when a higher-level operation execution returns, there is no pending
lower-level operation execution to be carried out asynchronously, and hence, no higher-level
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operation execution makes early return. The question is: Can we construct Read/Write
variables with optimized operation executions? We discuss this issue in this subsection. We
point out which types of variables can (and cannot) have Write optimizations in the next
sub-subsection. In the following sub-subsection we use this result to show that sequentially
consistent variables alone cannot wait-freely implement a linearizable variable.

3.4.1 Write optimization

In computer hardware domain, we are familiar with two types of basic building blocks:
flip-flop and latch. They are the same hardware, but operate on different logic (Cf. [27]).
A flip-flop is edge (the rising edge of a driving clock) triggered, whereas a latch is level
triggered. The latch takes the entire clock pulse to change its state; the flip-flop finishes
early. The same concept may be applied to operation executions at various levels of system
building.

For each operation execution on a higher-level shared variable V , the executing processor
first issues an invocation request (with appropriate arguments) to the variable interface. The
request is appropriately translated into read/write requests on primitive variables used in
the physical representation of V by the interface (or its agents) which sends a reply back
to the requesting processor. This entire end-to-end time span (in any time reference) of the
operation execution may be imagined as a single pulse. Let us call it an operation pulse.
An operation pulse is considered complete when no agents are involved any more in the
operation execution. (Note that the original requesting processor considers the operation
execution to be over right when it receives back a notification reply. This is irrespective of
whether the operation pulse is complete or not. The processor does not know this and can
start a new operation execution immediately.)

By an edge triggered Write of a shared variable V , we mean that, on receiving the
write invocation request, the interface of V sends a reply back to the issuing processor
before completing ‘all’ required low-level read/write actions on the primitive variables. That
is, the interface does not wait until the entire operation pulse is complete; the operation
pulse continues in the background until all the involved primitive operation executions are
complete. Some agents will carry out these pending primitive operation executions on
behalf of the original issuing processor, but we do not know when the agents will finish
the pending work. (For example, for a write operation execution, as done in some shared
variable implementations, the interface may write the value into a local cache and then
return the acknowledgment to the writer. See [13]. The value is propagated to other caches
asynchronously by agents of the cache.21 The operative word is asynchronous propagation,
and not a time bound propagation.) Note that a Read of V occurring after a Write in the
global time order may not be able to trace the value of the Write. (In Figure 1, for the
optimized part, the Read R could not trace the value of Write W2 even though W2 −→gt R

at the higher level.) By a level triggered Write of V , we mean that the interface sends a reply
back to the issuing processor only after all representations of V are appropriately updated.
That is, the entire operation pulse is complete, and no more actions remain pending after
the Write is complete. All Reads occurring after the Write in the global time order will be

21You may note that a Read from another processor may not be able to trace the value in a bounded
amount of time if its request to the value-holding cache is not answered in a bounded time. Even if a time
bound is assured, whose time reference is used to measure the bound? The reading processor may speed up
its clock and declare a timeout.
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able to trace the value of the Write. We note that, for efficiency, we may early complete
the Write, but at the least, the value of the Write must be traceable to all new Reads R

such that W −→gt R and R can do so in a bounded amount of time. The operative word is
bounded time traceability. This is different than edge triggered case where W may not be
traceable to R in a bounded time. That is the difference between level and edge triggers.
In the edge trigger case, R may not see any space-time point of W , but in the level trigger
case it will see some space-time points.

A Read of a shared variable V can also be edge or level triggered. No sooner than
the interface (of V ) can decide on a consistent value for the Read, it can return the value
to the Read. Thus, the Read is edge triggered and the interface may not need to consult
all processors before completing the Read. However, after completing a Read, it does not
make much sense to continue the Read’s effect asynchronously as the Read does not change
the value of V . So, we assume Reads are always level triggered. Consequently, the shared
variable interface has the liberty to decide as to when acknowledgments are returned to the
Writes. In summary, a level triggered Write informs all future Reads about the new value
written by it, but an edge triggered Write may not do so. Thereby, at the interface of V ,
edge triggered Writes appear to be faster than level triggered ones.

It is interesting to note that all Reads and Writes on each primitive variable are always
level triggered. This is because by assumption primitive variables are 1-writer 1-reader, and
the writer processor cannot early-return from a Write of the variable and then come back
and finish the Write. (If it does so, the Write will be treated as multiple Writes on the
primitive variable.) No other agent can finish the Write also since otherwise the variable
becomes 2-writer. The question is: do all consistency specifications require to have only
level triggered Writes for higher-level shared variables? The answer is perhaps no. The
challenge is to effectively construct edge triggered Writes at higher-levels using these level-
triggered primitive variables. But, we may not be able to do write optimizations for all
consistencies. This is partly addressed in the following sub-subsection.

3.4.2 Some impossibility results

Attiya and Welch [5] present a quantitative analysis to show that linearizability is a costly
consistency condition compared to sequential consistency. What is the fundamental reason
behind this? The answer is given in the following theorem.

Theorem 1 Linearizability does not permit edge triggered Writes.

Proof: For a defining relation ρ, ρ-atomic executions of a shared variable are linearizable if ρ

includes the global time order of operation executions [10]. It means that there are no read-
illegalities in ρe, the exclusion closure of ρ. To avoid all read-illegalities, any implementation
of a linearizable variable V must have at the least the following property: Each Write W

of V , which precedes a Read R of V in the global time order −→gt (i.e., W −→gt R), must
leave some information that is “traceable” by the future Read R, and R must be able to
decide, in a bounded time, on the latest value of V from this traceable information. You
may note that “W is not traceable to R” implies that no space-time point for W precedes
or coincides that of R. As primitive variables are our only communication medium and
persistent storage, we need to map the (higher level) −→gt ordering into some (lower level)
primitive-object ordering(s) −→x for some primitive variable(s) x. Consequently, by the
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principle of space-time coincidence and storage persistence behavior, W or some agents of
W and R must either (1) overlap at the same space (at least one primitive variable) and at
the same time (the primitive variable’s time) on each other to have a space-time coincidence
for information transfer, or (2) W or its agent precedes R on that space in the time reference
of that space. This implies that the shared variable interface of V (acting on behalf of the
Write W ), before replying to W , must induce space-time point(s) by writing some primitive
variables x (in the representation of V ) that would be read by the Read R. That is, there is
at least one primitive variable x such that W (x) -

xR(x) by the time reference Tx of x. As
x is a regular variable, to avoid flickering behavior, we must have W (x) −→x R(x) before
W is complete. This is true for all primitive variables x whose values R uses to construct
a value of V . Thus, the interface of V cannot reply to W before it completes writing some
primitive variables x that will be read by R to construct the value it would return. By
doing this, the interface would translate the global time order −→gt between W and R into
strong causal orders in some time references Tx (Cf. Time Axioms T5 and T6).

Side bar: This is the fundamental problem to be addressed in any imple-
mentation of linearizable shared variables, that is, the implementation must
translate global time ordering into strong primitive-object orders. Thereby,
the higher-level Write-Read ordering in −→gt gets translated into (lower
level) strong primitive-object ordering in −→x for some primitive variables
x.
This is true for a Read coming from any processor that is allowed to read V . Thereby, the

Write must be complete for all those processors, and Reads from the processors occurring
after the Write is complete must be able to trace the value of the Write. As linearizability
is a nonblocking property,22 in the absence of new Writes, at least one Read must be able to
complete its execution in a bounded time (of the reading processor). Thus, Writes cannot
be edge triggered (that is, complete for some processors and incomplete for others), and
they must be level triggered; otherwise some Read will be blocked forever. 2

Theorem 1 is perhaps a good indication why linearizability is a local property: a sys-
tem as a whole is linearizable when every individual variable is linearizable [11]. The
phenomenon described in the sidebar in the proof of the above theorem may have been
observed by Garg and Raynal [7]. They conclude that the use of the global time ordering
in the original definition of linearizability in [11] is not necessary when operation execu-
tions are unary (involving only one object), and lower-level object orders are sufficient.
Note that under level triggered operation executions, each higher-level operation execution
encompasses all its lower-level operation executions, and hence object orders will include
the global time order. In the following claim we show that for sequential consistency, in
contrast, all Writes need not be level triggered.

Claim 1 Sequential consistency does permit edge triggered Writes.

Proof: Sequential consistency does not give importance to the global time ordering of higher-
level operation executions of different processors as far as determining the defining condition
is concerned at the higher level. It ensures atomicity for the defining relation (

⋃
i −→i

∪ −→rf )∗ on the higher-level operation executions, where −→rf , the read-from relation

22A nonblocking property implies a pending execution of a totally defined operation is never required to
wait for another pending operation execution to complete. Some particular implementation may block an
operation execution, but it is not an inherent property of linearizability.

19



specifies which Reads read from which Writes. Consider a simple execution scenario of a
sequentially consistent variable V in which there are a Write W from a processor P1 and
a Read R from a different processor P2 such that W −→gt R. For this execution scenario,
sequential consistency permits the Read R to return the initial value of V . Then, 〈R, W 〉
is a valid total order for the given execution to be sequentially consistent. Thus, the value
of W need not be traceable to R. Thereby, for all the common primitive shared variables x

that W writes and R reads, we can have R(x) −→x W (x) at the primitive level. So, there
is no need for W (x) to be completed before the interface of V acknowledges the completion
of W . These Writes on x can be scheduled later by the interface of V . Thus, higher-level
Writes W need not be level triggered (because W need not be traceable to Reads of V from
other processors when W is complete), and we can make them edge triggered.

Side bar: The value of W will be asynchronously transferred to all primitive
variables so that other processors eventually see the value of W . The point
to note here is that the semantics of sequential consistency does not enforce
a time bound for the agents to complete the asynchronous transfers even
though some specific implementations may do.
2

It has been shown in the literature that sequential consistency is weaker than lineariz-
ability: for example sequential consistency is not a local property, but linearizability is [11].
Here we have given an alternative proof from a different perspective. We conjecture that
any lower-level object that permits edge triggered Writes may not be used alone to imple-
ment wait-free linearizable variables. We substantiate this conjecture by proving below that
sequentially consistent variables alone cannot wait-freely implement a linearizable variable.

Theorem 2 We cannot (deterministically) construct a wait-free 1-writer 1-reader lineariz-
able variable from a finite number of 1-writer 1-reader sequentially consistent variables.

Proof: Suppose, on the contrary to the statement of the theorem, that a 1-writer 1-reader
linearizable variable V is wait-freely constructed from a finite collection of 1-writer 1-reader
sequentially consistent variables x1, x2, · · · , xm and y1, y2, · · · , yn. The former are written by
the writer processor Pw and read by the reader processor Pr, and the latter are written by
Pr and read by Pw. Let the initial value of V be v represented by xi = vi, for i = 1, 2, · · · , m
and yj = uj , for j = 1, 2, · · · , n. Suppose the first Write W of V by Pw writes v′ in it. By
Theorem 1, it is a level-triggered Write; and, it has to make its value traceable to Reads of V

by Pr. The Write W may read variables yj and write variables xi a bounded number of times
(by the nonblocking property of the linearizability of V ). Suppose, when W is complete,
the values of variables xi are v′i representing V = v′. The values of yj remain the same. The
reader Pr starts the first Read R of V after the Write W is complete. That is, W −→gt R.
(Global observers will be able to see this, but Pr may not.) The Read R may read variables
xi and write variables yj , a bounded number of times to determine the value of V (again
by the nonblocking property of linearizability). As lower-level variables are sequentially
consistent, the Writes on each sequentially consistent variable from one processor may not
affect the Reads of the variables from the other processor. That is, for any (lower-level)
Write WPw

(xi) and (lower-level) Read RPr
(xi), we can have RPr

(xi) −→xi
WPw

(xi) at the
interface of xi. Similarly, for the yj variables, we can have RPw

(yj) −→yj
WPr

(yj) at the
interface of yj . Then, R would read vi (the initial value) from xi. As R reads the initial
values from sequentially consistent variables xi, it cannot trace the value of W and it will
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return the initial value v from V . This violates the linearizability of V , because by virtue
of W −→gt R, R should have returned the value of W . The theorem follows. 2

4 Concluding remarks

In practice, we should be able to determine consistencies ensured by shared variable imple-
mentations. To classify executions of these implementations, we first need to define abstract
higher-level system executions from the lower-level ones. We must have some means or tools
to do this. Lamport [18] defines an implementation relation for this purpose.

At the primitive level, the shared variables are 1-writer 1-reader regular bits. To apply
Lamport’s implementation relation, we need to define system executions for the primitive
variables. For this, we need to define −→ and - precedence relations on primitive
operation executions. Lamport assumes the Axiom B2 for this purpose. We wanted to
investigate the rationale behind this axiom.

For asynchronous distributed systems, it is tacitly assumed that processors do not have
access to any form of time references. But, we do not explicitly say so for the shared vari-
ables. We conjecture that it is not possible to define overlapping operation executions on a
primitive shared variable without the assumption of a linear time reference for that variable.
The concept of time is vital to our sense of thinking, understanding, and reasoning. We
implicitly assume, in our subconscious mind, the existence of such a time reference for each
primitive shared variable in the system. We take a cue from the special relativity theory
of Physics, and claim that a time reference (in fact, space-time coincidence) is needed to
study the behavior of operation executions on a primitive variable. These time references
provide us a mental framework to define the “cause-effect” relationship on operation ex-
ecutions of two different processors. Sequential consistency is expensive to implement as
it must promote these implicit shared variable time references to a unique time reference
for all operation executions. Linearizability, in addition to those of sequential consistency,
needs to respect the order of operation executions separated in the global time. These time
references are akin to Lamport’s logical clock [14]; we can think in terms of each commu-
nication channel having a virtual clock that ensures that a message sent is never delivered
in the temporal past. We may note that Axiom B2 is same as the global-time axiom at the
primitive level.

Several studies have been done for implementing stronger consistencies from weaker
ones: causal consistency to sequential consistency [25], sequential consistency to lineariz-
ability [5], regularity to atomicity [9, 18], etc. There are a lot of things that are not clear
to us from these implementations. By Theorem 2, we cannot wait-freely construct a 1-
writer 1-reader linearizable variable from a finite number of 1-writer 1-reader sequentially
consistent variables. This implies that we cannot wait-freely construct linearizable memory
from sequentially consistent memory without introducing other (special synchronization)
primitives to access shared variables. What are the weakest required primitives for such
purposes? The proposed constructions (Cf. [5]) in the literature use message passing sys-
tem for interprocessor communications. The message passing system definitely plays a non
trivial role and ensures these primitives even though we do not know what they are. We
need to investigate these constructions to find out the weakest set of primitives required to
wait-freely implement linearizable variables from sequentially consistent variables. The next
question is where does 1-writer 1-reader sequentially consistent variables reside in Herlihy’s
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hierarchy [12]?

During establishing our axioms we assumed non-zero finite time intervals for operation
executions. This is purely for convenience in understanding the axioms and results presented
in this paper. We may not need such stringent assumptions. At one extreme, an operation
execution can be a single time moment, causing a single space-time coincidence, instead of
spanning a time interval. At the other extreme, a time interval can be infinite too, taking
care of failed operation executions.
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