

TECHNICAL REPORT #2011-01

Correctness of Concurrent Executions of Closed Nested Transactions in Transactional Memory Systems

by

Sathya Peri and K. Vidyasankar

Department of Computer Science Memorial University of Newfoundland St. John's, NL, Canada A1B 3X5

July 2011

Correctness of Concurrent Executions of Closed Nested Transactions in Transactional Memory Systems *

Sathya Peri[†] sathya@iitp.ac.in Indian Institute of Technology Patna, India

K.Vidyasankar vidya@mun.ca Memorial University, St John's, Canada

July 19, 2011

Abstract

A generally agreed upon requirement for correctness of concurrent executions in Transactional Memory is that all transactions including the aborted ones read consistent values. *Opacity* is a recently proposed correctness criterion that satisfies the above requirement. Our first contribution in this paper is extending the opacity definition for closed nested transactions. Secondly, we define a restricted class, again for closed nested transactions, that preserves conflicts. This is akin to conflict-serializable class for traditional database transactions. Our conflict definition is appropriate for optimistic executions which are most common in Software Transactional Memory (STM) systems. We show that membership in the new class can be checked in polynomial time. With opacity, an aborted transaction (considering only the read steps that were executed before aborting) may affect the consistency for the transactions that are executed subsequently. This property is not desirable in general and may be harmful for closed nested transaction in the sense that the abort of a sub-transaction may make committing its top-level transaction impossible. As our third contribution, we propose a correctness criterion that defines a class of schedules where aborted transactions do not affect consistency for other transactions. We define a conflict-preserving subclass of this class as well. Then we give the outline of a scheduler that implements this subclass. Both the class definitions and the conflict definition are new for nested transactions.

1 Introduction

In the recent years software transactional memory has garnered significant interest as an elegant alternative for developing concurrent code. Software transactions are units of execution in memory which enable concurrent threads to execute seamlessly [7, 16]. Traditionally locks have been used for developing parallel programs. But programming with locks has many disadvantages such as deadlocks, priority inversion etc. These disadvantages makes it difficult to build scalable software systems. Importantly, lock based software

^{*}This research is supported in part by the Natural Sciences and Engineering Research Council of Canada individual research grant 3182

[†]This work was done when the author was a Post-doctoral Fellow at Memorial University

components are difficult to compose i.e. building larger software systems using simpler software components [6]. Software transactions address many of the shortcomings of lock based systems. Specifically, software transactions provide a very promising approach for composing software components [6].

A (memory) transaction is an unit of code in execution in memory. A software transactional memory system (STM) ensures that a transaction appears either to execute atomically (even in presence of other concurrent transactions) or to never have executed at all. If a transaction executes to completion then it is *committed* and its effects are visible to other transactions. Otherwise it is *aborted* and none of its effects are visible to other transactions. Thus the values written by a live (incomplete) transaction to the memory are not visible to other transactions. To explain this concept, consider two transactions t_1, t_2 accessing a data-item, say x, which is initialized to 0. Let the sequence of operations be: $w_1(x,5)r_2(x)c_1c_2$ where c_1, c_2 refer to the commit operations of transactions t_1, t_2 respectively. Here the value that t_2 reads for x is 0 since at the time when t_2 reads x, t_1 has not yet committed. Thus its write is not yet visible to t_2 .

To achieve this effect, a commonly used approach by software transactions is optimistic synchronization (term used in [6]). In this approach, transactions have a local log where they record the values read and written in the course of its execution. When the transaction completes, it validates the contents of its log. If the log contributes to a consistent view of the memory, then the transaction updates the memory with the contents of the log. If not it aborts.

A STM system implements the log described above by having one global buffer for each data-item and one local buffer for each transaction accessing that data item. In the example described above, a global buffer is created for x. Any write to x by t_1 is performed in the local buffer. When t_1 commits, the value in the local buffer is transferred to the global buffer. Then t_1 's write values can be viewed by others. Hence until t_1 commits, its write operations are not visible to t_2 .

Composing simple transactions to build a larger transaction is an extremely useful property which forms the basis of modular programming. In STMs this can be achieved through nesting of transactions. A transaction is called nested if it invokes another transaction as a part of its execution. Nested transactions can broadly be classified as: *closed* and *open*. Consider a transaction t_P which has a sub-transaction t_S . In closed nesting when the sub-transaction t_S commits its effects are visible to t_P (and its siblings) but not to other transactions. On the other hand in open nesting the effects of the transaction t_S are visible to other transactions immediately after it commits without waiting for its parent transaction t_P to commit. However when t_P aborts then t_S is also aborted. In this paper we focus only on closed nested transactions.

To achieve atomicity, the above discussed notion of multiple buffers extends naturally to closed nested transactions. When a sub-transaction is created, new buffers are created for all the data-items it accesses. The contents of the buffer are merged with its parent's buffers when the sub-transaction commits. Thus if the sub-transaction writes any value to any data-item, that value will not be visible to its parent until the sub-transaction commits.

When (nested or non-nested) transactions accessing common data-items execute concurrently it is imperative that they execute correctly. We illustrate the notion of correctness using an example. Consider the code shown in Transaction 1 and Transaction 2. Both these transactions access common shared variables which are subscripted by g: $prevY_g$, $curY_g$, $prevX_g$, $curX_g$. When the system starts these variable are initialized with values: $prevY_g = prevX_g = 0$ and $curY_g = curX_g = 5$. Transaction 1 when invoked stores the values of variables $curY_g$, $curX_g$ in $prevY_g$, $prevX_g$ respectively and then updates the current values. Transaction 2 monitors the system by reading these variables and performs some checks.

When these transactions are executed serially one after another then both the transactions have a consistent view of the memory. Consider a case where the transactions execute concurrently when the shared variables have the values $prevY_g = prevX_g = 5$, $curY_g = curX_g = 10$ and $\delta Y = \delta X = 5$. Let the

Transaction 1 System Update TransactionSystemUpdate($\delta Y, \delta X$)1: $prevY_g \leftarrow curY_g$ 2: $curY_g \leftarrow curY_g + \delta Y$

3: $prevX_g \leftarrow curX_g$ 4: $curX_q \leftarrow curX_q + \delta X$

Transaction 2 System Monitor Transaction

SystemMonitor()

1: $sqCurY \leftarrow curY_g * curY_g$ 2: $sqPrevY \leftarrow prevY_g * prevY_g$ 3: $sqCurX \leftarrow curX_g * curX_g$ 4: $sqPrevX \leftarrow prevX_g * prevX_g$ 5: **if** (sqCurX >= 100) **then** 6: $curRatio \leftarrow (sqCurY - sqPrevY)/(sqCurX - sqPrevX)$ 7: **if** (curRatio < 0.5) **then** 8: SystemMaintenance() 9: **end if** 10: **end if**

sequence of the execution from this point be: Transaction2.1 Transaction2.2 Transaction2.3 Transaction1.1 Transaction1.2 Transaction1.3 Transaction1.4 c1 Transaction2.4 Transaction2.5 Transaction2.6. Here the notation Transaction1.2 indicates that Transaction 1 has executed step number 2. In this execution Transaction 1 executed in parallel when Transaction 2 was executing and committed its values. When Transaction 2 executed step 3, its variable sqCurX has the value 100. When Transaction 2 executes step 4 (after Transaction 1 has executed and committed its values), its variable sqPrevX is also 100. This is because of the (committed) write by Transaction 1. Then it will execute step 5. The 'if' statement will succeed because sqCurX = 100 and go to step 6. Here sqCurX and sqPrevX both have the same values. Hence the division in step 6 will cause a divide by zero error. Here the reads of the variables $curY_g, curX_g, prevY_g$ by Transaction 2 when combined with the read of $prevX_g$ do not form a 'consistent' view as it has been invalidated by the committed writes of Transaction1. Thus, this is not a 'correct' execution.

A commonly accepted correctness requirement for concurrent executions in STM systems is that all transactions including aborted ones read consistent values. The values resulting from any serial execution of transactions are assumed to be consistent. Then, for each transaction, in a concurrent execution, there should exist a serial execution of some of the transactions giving rise to the values read by that transaction. Thus the execution mentioned in the above example is not correct since it is not equivalent to any serial execution of Transaction 1 and Transaction 2. Guerraoui and Kapalka [5] captured this requirement as *opacity*. An implementation of opacity for non-nested transactions has been given in [9].

The correctness criterion used in traditional databases is serializability[14, 17]. According to serializability an interleaving execution of committed transactions is correct if it is equivalent to some serial execution of the same set of transactions. But serializability concerns itself only with the events of committed transactions. Any execution that satisfies serializability ensures that all committed transactions read consistent values. It does not require that the aborted transactions read consistent values. As pointed out in [5] this is acceptable in the context of databases which are executed in highly controlled environments. But in the context of STMs, it is imperative that even the operations of aborted transactions see consistent values. Otherwise it could have several undesirable effects such as 'divide by zero' error, crash failure or even infinite loops [5, 9]. In the above example suppose Transaction 2 was aborted at step 8 (due to some other system related issue). In spite of that, it is not acceptable for Transaction 2 to execute the read of step 5 (as it is an invalid read) and will cause the 'divide-by-zero' error.

On the other hand, the recent understanding (Doherty et al [3], Imbs et al [8]) is that opacity is too strong a correctness criterion for STMs. Weaker notions have been proposed: (i) The requirement of a single equivalent serial schedule is replaced by allowing possibly different equivalent serial schedules for committed transactions and for each aborted transaction, and these schedules need not be compatible; and (ii) the effects, namely, the read steps, of aborted transactions should not affect the consistency of the transactions executed subsequently. The first point refines the consistency notion for aborted transactions. (All the proposals insist on a single equivalent serial schedule consisting of all committed transactions.) The second point is a desirable property for transactions in general and a critical point for nested transactions, where the effects of an aborted sub-transaction may prohibit committing the entire top-level transaction. The above proposals in the literature have been made for non-nested transactions.

In this paper, we extend the opacity definition for closed nested transactions. We define two notions and corresponding classes of schedules: *Closed Nested Opacity (CNO)* and *Abort-Shielded Consistency (ASC)*. In the first notion, read steps of aborted (sub-)transactions are included as in Guerraoui and Kapalka [5, 9]. In the second, they are discarded. These extensions turn out to be nontrivial due to the fact that an aborted sub-transaction may have some committed descendents and similarly some committed ancestors.

Checking opacity, like general serializability (for instance, view-serializability), cannot be done efficiently. Very much like restricted classes of serializability allowing polynomial membership test, and facilitating online scheduling, restricted classes of opacity can also be defined. We define such classes along the lines of conflict-serializability for database transactions: *Conflict-Preserving Closed Nested Opacity (CP-CNO)* and *Conflict-Preserving Abort-Shielded Consistency (CP-ASC)*. Our conflict notion is tailored for optimistic execution of the sub-transactions and not just between any two conflicting operations. We give an algorithm for checking the membership in CP-CNO (which can be easily modified for CP-ASC) and a scheduler for CP-ASC (which can be easily modified for CP-CNO). Both use serialization graphs similar to those in [15].

We note that all online schedulers (implementing 2PL, timestamp, optimistic approaches, etc.) for database transactions allow only subclasses of conflict-serializable schedules. We believe similarly that all STM schedulers can only allow subclasses of conflict-preserving schedules satisfying opacity or any of its variants. Such schedulers are likely to use mechanisms simpler than serialization graphs as in the database area. An example is the scheduler described by Imbs and Raynal [9].

In the context of nested transactions there have been many implementations of nested transactions in the past few years [2, 13, 12, 1, 11, 10]. In [5], the authors discuss extending opacity to nested transactions. But none of them provide a precise correctness criteria for nested software transactional memory system that can be efficiently verified. To summarize, in this paper we present two classes of correctness criteria for closed nested transactions and describe subsets of these classes that can be efficiently verified.

Roadmap: In Section 2, we describe our model and background. In Section 3, we define CNO, CP-CNO and give an algorithm for polynomial membership test. In Section 4, we present ASC and CP-ASC. In Section 5 we discuss about some variations to the definitions discussed and Section 6 concludes this paper.

2 Background and System Model

A transaction is a piece of code in execution. In the course of its execution a nested transaction may perform read/write operations on memory and invoke other transactions (also referred to as sub-transactions). We refer to these as *operations* of the transaction. A sub-transaction (of a transaction) could further invoke other transactions as a part of its execution. Thus a computation involving nested transactions constitutes a *computation tree*. The nodes of this tree are read and write operations, and transactions. The operations of a transaction can be viewed as its children. The operations are classified as: *simple-memory operations* and *transaction operations* or just *transactions*. Simple-memory operations are read or write operations on memory and have no children. Thus in the computation tree all the leaves are simple-memory operations.

In addition to memory operations, a transaction also contains a *commit* or *abort* operation. If a transaction t_X executes successfully to completion, it terminates with a commit operation c_X . Otherwise it aborts with the operation a_X . Abort and commit operations are called *terminal operations*. By default, all the simple-memory operations always commit.

Consider a closed-nested transaction t_P . When t_P accesses a data-item a local buffer is created for it. For instance if it reads data-item x and writes data-items y and z then the STM system creates three local buffers. These buffers are initialized with \perp value. All the writes by t_P are in its local buffers. When t_P commits the contents of its local buffers are merged with the buffers of its parent. Thus any peer transaction of t_P can read the values written by t_P only after it commits. If t_P aborts then its local write values are not merged with its parent's buffers. Thus, none of the writes of an aborted transaction ever become visible to other transactions.

We assume that there exists a hypothetical root transaction of the computation tree, denoted as t_0 , which invokes all the other transactions. On system initialization we assume that there exists a child transaction of t_0 , t_{init} , which initializes all the buffers of t_0 with non- \perp values. Similarly we also assume that there exists a child transaction of t_0 , t_{fin} , which reads the contents of t_0 's buffers when the computation terminates.

This discussion explains how write operations are performed by transactions. Now we will informally describe how read operations are performed. We assume that for a transaction to read a data-item, say x, (unlike write) it has access to x data buffers of all its ancestors apart from its own. But it does not have access to its children's buffers. To read x, a nested transaction t_N first reads its local x buffer. If the value read from its buffer is \bot then it reads from its parent's x buffer. If that is also \bot , it then reads the buffer of the parent of the parent and so on. It reads the x buffers in this way until it reads a non- \bot value. Since t_0 's buffers have been initialized, t_N will eventually read a non- \bot value. We will revisit read operations a few subsections later where we formally describe it.

2.1 Schedules

All transactions and simple-memory operations are nodes of the computation tree. We denote them as n_{id} . An *id* is concatenation of digits and uniquely identifies a transaction/operation. When we are specifically referring to a transaction we denote it as t_X . For a transaction with *id* as t_X having *k* children, we name the child operations as $n_{X1}, n_{X2}, \dots, n_{Xk}$. If a child (for example n_{X1}) is a simple-memory operation reading or writing data-item *y* then we denote it as $r_{X1}(y)$ or $w_{X1}(y)$ and also as $sm_{X1}(y)$.

A sample computation tree is shown here. We show each transaction followed by all its operations. In Figure 1 we show the computation tree for this schedule. As indicated earlier we denote the root transaction as t_0 :

Figure 1: Computation tree for Example 1

Example 1 $t_0: \{t_{init}, t_{01}, t_{02}, t_{03}, t_{fin}\},\ t_{01}: \{t_{011}, sm_{012} = w_{012}(z), sm_{013} = w_{013}(y), c_{01}\},\ t_{011}: \{sm_{0111} = r_{0111}(x), sm_{0112} = w_{0112}(y), c_{011}\},\ t_{02}: \{t_{021}, t_{022}, c_{02}\},\ t_{021}: \{sm_{0211} = r_{0211}(z), sm_{0212} = w_{0212}(y), c_{021}\},\ t_{022}: \{sm_{0221} = r_{0221}(x), sm_{0222} = w_{0222}(z), a_{022}\},\ t_{03}: \{sm_{031} = r_{031}(y), sm_{032} = r_{032}(z), sm_{033} = w_{033}(z), c_{03}\}$

A schedule is a real time execution of the leaves of a computation tree. The events of a schedule are memory operations and terminal operations of transactions in the computation. The events of a schedule S are totally ordered. A schedule is represented by the tuple $\langle evts, nodes, ord \rangle$, where evts is the set of all events in the schedule, nodes is the set of all the nodes (transactions and simple-memory operations) present in the computation and ord is a function that totally orders all the events. In the context of a schedule we denote an event of a schedule as e_i . Thus all the leaf nodes in the tree are referred to as events in the context of schedules. A schedule for the computation tree in Example 1 can be represented as:

Example 2

 $S1: r_{0111}(x)w_{0112}(y)c_{011}w_{012}(z)r_{0211}(z)w_{0212}(y)c_{021}w_{013}(y)c_{01}r_{0221}(x)w_{0222}(z)a_{022}c_{02}r_{031}(y)r_{032}(z)$ $w_{033}(z)c_{03}$

For a closed nested transaction, all its write operations are visible to other transactions only after it commits. Here $w_{0212}(y)$ occurs before $w_{013}(y)$. When t_{01} commits, it writes $w_{013}(y)$ in t_0 's buffer. But t_{02} commits after t_{01} commits. When t_{02} commits it overwrites t_0 's y buffer with $w_{0212}(y)$. Thus when transaction t_{03} performs the read operation $r_{031}(y)$, it reads the value written by $w_{0212}(y)$ and not the one written by $w_{013}(y)$ even though $w_{013}(y)$ occurs after $w_{0212}(y)$.

To model these effects clearly, we augment a schedule with extra write operations. Prior to the commit event of a transaction, a few write operations are added to the schedule to represent the merging of its local buffers with its parent's buffers. We call these writes as *commit-write* operations. To every data buffer a committed transaction writes to (i.e. values written by a child or a descendent that has not aborted), there exists a commit-write operation. This write is the latest value on the data buffer. For example consider a transaction t_X consisting of operations $w_{X1}(y)w_{X2}(z)w_{X3}(y)$ which it executes in this order and commits. Then in the schedule there is a commit-write operation for y and a commit-write for z.

In the above example t_X writes to data-item y twice. So its local data-buffer will hold the most recently written value. In this case the buffer holds the write of $w_{X3}(y)$. The commit-write operation for y writes the latest write operation i.e. $w_{X3}(y)$. We denote the commit-write for y as $w_X^{X3}(y)$ and for z as $w_X^{X2}(z)$. The superscript provides the information about which child write operation this commit-write corresponds to. Since the local write buffers of an aborted transaction are not merged with its parent's buffer there are no commit-write operations corresponding to an aborted transaction. Using this notation we re-write the schedule in Example 2 as follows:

Example 3

 $S2: r_{0111}(x)w_{0112}(y)w_{011}^{0112}(y)c_{011}w_{012}(z)r_{0211}(z)w_{0212}(y)w_{021}^{0212}(y)c_{021}w_{013}(y)w_{01}^{012}(z)w_{01}^{013}(y)c_{01}r_{0221}(x)w_{0222}(z)a_{022}w_{02}^{021}(y)c_{02}r_{031}(y)r_{032}(z)w_{033}(z)c_{03}$

Originally in the computation tree only the leaf nodes could write. With this augmentation of transactions even non-leaf nodes corresponding to committed transactions write with commit-write operations. For sake of brevity, we do not represent commit-writes in the computation tree. We assume that all the schedules we deal with are augmented with commit-writes.

It must be observed that a transaction's commit-write operation writes in its parent's buffers. For instance t_{021} 's commit-write $w_{02}^{021}(y)$ writes in t_{02} 's y buffer (and not in t_{021} 's buffer). We denote the set of commit-writes of a committed transaction as *commit-set*. As opposed to commit-write we denote a simple memory write operation as a *simple-memory write*.

In our model a schedule has the complete information about the computation tree. Thus given a schedule we can obtain the entire computation tree from the subscripts of the events in it. Now consider two schedules S1 and S2. If the sets of events in these schedules are the same then the computation trees represented by these schedules are the same. This is true irrespective of the ordering of the events in the schedules. The following property states it,

Property 1 Consider two schedules S1 and S2. If the sets of events of the schedules are the same then the computation trees represented by the schedules are also the same and vice-versa. Formally, $\langle S1, S2 : (S1.evts = S2.evts) \Leftrightarrow$ (the computation trees of S1 and S2 are the same) \rangle

Collectively we refer to simple-memory operations and commit-write operations as memory operations. Since simple-memory operations are committed by default the commit-write notion can be extended to any tree node. Thus for any node n_X in a computation tree represented by a schedule S, we define

	n_X 's commit-set	n_X is a committed transaction
$S.cwrite(n_X) = \langle$	nil	n_X is an aborted transaction
	n_X	n_X is a simple-memory write
	nil	n_X is a read operation

With the introduction of commit-write operations we extend the definition of an operation, denoted as o_X , to represent either a transaction or a commit-write operation or a simple-memory operation. When we refer to a node on the computation tree, denoted as n_X , it is either a transaction or a simple-memory

operation. Thus a node is also an operation. But an operation referring to a commit-write operation of a transaction is not a node since it is not part of the computation tree. We denote a memory operation (either commit-write or simple-memory operation) as $m_X(y)$ or just m_X if the data-item is not important to the context.

We define two kinds of transactions: nested and non-nested. A non-nested transaction has only simplememory operations as its children. A nested transaction has other transactions (either nested or non-nested) and simple-memory operations as its children.

2.2 Function Definitions

In this section we describe the functions used for describing our algorithm. All the functions pertain to the computation tree represented by a schedule S.

We define a function *holder* for an operation as:

 $S.holder(o_X) = \begin{cases} t_X & o_X \text{ is a commit-write belonging to } t_X, \\ o_X & o_X \text{ is a node of the tree} \end{cases}$

The $S.holder(o_X)$ is same as o_X when it is a transaction or a simple-memory operation. For any o_X , its holder maps it onto a node in the computation tree and thus will be denoted by n_X . In S2 of Example 3, $S2.holder(w_{021}^{0212})$ is t_{021} .

For any operation o_X , we define $S.level(o_X)$ as the distance of $S.holder(o_X)$ in the tree from the root. From this definition t_0 is at level 0. The level of a transaction and all its commit-write operations are the same. For instance in Example 3, $S2.level(w_{021}^{0212}) = S2.level(t_{021}) = 2$.

For a given tree node n_X (a transaction or a simple-memory operation) in the computation tree represented by the schedule S, we define: $S.parent(n_X)$ as the parent of n_X on the tree, $S.children(n_X)$ as children of n_X on the tree, $S.desc(n_X)$ as the set of descendants of n_X on the tree and $S.ansc(n_X)$ as the set of ancestors of n_X on the tree.

These functions can be extended to any operation o_X (including commit-write operation of transactions) by defining them for $S.holder(o_X)$ over the tree. Thus by this extension the parent of a commit-write, m_X , of a transaction t_X is t_X 's parent in the tree. Similarly m_X 's children are t_X 's children. For instance in S2 of Example 3, $S2.parent(w_{021}^{0212}) = t_{02}$ and $S2.children(w_{021}^{0212}) = \{r_{0211}(z), w_{0212}(y)\}$. But it must be noted that $S2.parent(r_{0211}(z))$ is t_{021} and not w_{021}^{0212} . Similarly these arguments can be extended to descendants and ancestors.

Consider two operations o_X , o_Y , in the computation tree represented by a schedule S. We define $S.lca(o_X, o_Y)$ as the least common ancestor of $S.holder(o_X)$ and $S.holder(o_Y)$ in the computation tree of S.

Next we define dSet function to be associated with every operation in the schedule S.

Definition 1 (dSet)

$$S.dSet(o_X) = \begin{cases} o_X \cup (\bigcup_{\substack{n_Y \in S.children(o_X) \\ o_X \\ S.dSet(S.holder(o_X)) \end{pmatrix}} S.dSet(n_Y)) \cup S.cwrite(o_X) & o_X \text{ is a transaction,} \\ o_X & o_X \text{ is a simple-memory operation,} \\ S.dSet(S.holder(o_X)) & o_X \text{ is a commit-write} \end{cases}$$

Thus for a transaction t_X this function comprises of itself, its descendents, its commit-writes and all its descendent's commit-writes. By this definition we get that for any operation o_X , $S.dSet(o_X) = S.dSet(S.holder(o_X))$. In Example 3, $S2.dSet(t_{02}) = S2.dSet(w_{02}^{021}(y)) = \{t_{02}, r_{0211}(z), w_{0212}(y), w_{021}^{0212}(y), t_{021}, r_{0221}(x), w_{0222}(z), t_{022}, w_{02}^{021}(y)\}$

We have the following properties which follow from the definition of dSet:

Property 2 In the computation tree represented by a schedule S, for any operation o_X belonging to o_Y 's dSet, the level of o_X is greater than or equal to o_Y 's level. Formally, $\langle S : (o_X \in S.dSet(o_Y)) \Rightarrow (S.level(o_X) \ge S.level(o_Y) \rangle$

Property 3 In the computation tree represented by a schedule S, if an operation o_X belongs to o_Y 's dSet and o_X, o_Y are at the same level then the holders of o_X, o_Y are the same. Formally, $\langle S : (o_X \in S.dSet(o_Y)) \land (S.level(o_X) = S.level(o_Y)) \Rightarrow (S.holder(o_X) = S.holder(o_Y)) \rangle$

Property 4 In the computation tree represented by a schedule S, if an operation o_X belongs to o_Y 's dSet and its level is greater than o_Y 's level then the holder of o_X is a descendent of o_Y . Formally, $\langle S : (o_X \in S.dSet(o_Y)) \land (S.level(o_X) > S.level(o_Y)) \Rightarrow (S.holder(o_X) \in S.desc(o_Y)) \rangle$

Now we define a peer function on an operation o_X in a schedule S:

 $S.peers(o_X) = \{o_Y | (S.holder(o_X) \neq S.holder(o_Y)) \land (S.parent(o_X) = S.parent(o_Y))\}$

By this definition, two operations are 'peers' of each other if they have the same parent but are not commit-write operations of the same transaction. Thus a transaction and all the elements of its commit-set are not peers of each other even though they all have the same parent. It is useful to view a transaction and all the elements of its commit-set as a single fused super node in the tree. From this definition we get that $(o_X \in S.peers(o_Y)) \Rightarrow (o_Y \in S.peers(o_X))$ but $(o_X \notin S.peers(o_X))$. Consider two memory operations $m_X(z), m_Y(z)$ operating on the same data-item. If they are peers, having the same parent say t_P , then they have access to the same data buffer z belonging to t_P .

Next we define a very useful function optVis on two operations o_X, o_Y in a schedule S, denoted as $S.optVis(o_Y, o_X)$. We will explain the significance of this function through the course of this document.

Definition 2 (optVis)

$$S.optVis(o_Y, o_X) = \begin{cases} true & o_Y \in (S.peers(o_X) \cup S.peers(S.ansc(o_X))) \\ false & otherwise \end{cases}$$

One can see that optVis function is not symmetrical. That is, $S.optVis(o_Y, o_X)$ does not imply

S.optVis (o_X, o_Y) . If S.optVis (o_Y, o_X) is true then we say that o_Y is optVis to o_X in S. It must also be noted that by the definition if $(o_X \in S.dSet(o_Y))$ then $S.optVis(o_Y, o_X)$ is false. As a result for any commit-write of a transaction t_Y , say w_Y , $S.optVis(w_Y, t_Y)$ is false. It can also be seen that if $S.optVis(o_Y, o_X)$ then the S.holder (o_Y) is not an ancestor of o_X .

Figure 2 illustrates optVis. Here the dashed line represents the set of ancestors of m_X . The operations m_A, m_B, m_C are peers of m_X 's ancestors. Hence they all are optVis to m_X .

In S2 of Example 3, we have that $S2.optVis(t_{01}, t_{02}) = S2.optVis(t_{02}, t_{03}) = S2.optVis(t_{03}, t_{01})$ = true because t_{01}, t_{02}, t_{03} are peers of each other. Now looking at some subtle examples:

Figure 2: This figures illustrates optVis. The dashed line represents the set of ancestors of m_X .

 $S2.optVis(w_{01}^{013}(y), w_{03}^{033}(z)) \text{ is true because } w_{01}^{013}(y), w_{03}^{033}(z) \text{ are peers. } S2.optVis(w_{01}^{012}(z), r_{0211}(z)) \text{ is true as } w_{01}^{012}(z) \text{ is a peer of } t_{02} \text{ which is an ancestor of } r_{0211}(z). \text{ Similarly } S2.optVis(t_{01}, t_{022}) \text{ is true. But } S2.optVis(r_{0211}(z), w_{01}^{012}(z)) \text{ and } S2.optVis(t_{022}, t_{01}) \text{ are false. Also } S2.optVis(w_{01}^{013}(y), w_{0112}(y)) \text{ is false as } w_{0112}(y) \text{ is in } t_{01}\text{ 's dSet and } w_{01}^{013}(y) \text{ is a commit-write of } t_{01}. \text{ Similarly } S2.optVis(w_{03}^{033}(z), r_{032}(z)) \text{ is false. Now we define some properties and lemmas about optVis.}$

Property 5 In a schedule S if a memory operation (commit-write/simple-memory operation) m_Y is optVis to another memory operation m_X then m_X 's holder is a descendent of parent of m_Y . Formally $\langle S: S.optVis(m_Y, m_X) \Rightarrow (S.holder(m_X) \in S.desc(S.parent(m_Y))) \rangle$

Property 6 Consider two write operations w_Y, w_Z and a read operation r_X in a schedule S. If both w_Y, w_Z are optVis to r_X and are at the same level then w_Y, w_Z have the same parent. Formally, $(S.optVis(w_Y, r_X) \land S.optVis(w_Z, r_X) \land (S.level(w_Y) = S.level(w_Z)) \Rightarrow (S.parent(w_Y) = S.parent(w_Z))$

Lemma 7 Consider two schedules S1 and S2 such that both of them have the same set of events. Suppose for two events o_Y and o_X , o_Y is optVis to o_X in S1. Then o_Y is optVis to o_X in S2 as well. Formally, $\langle S1, S2 : \{o_X, o_Y\} \in S1.evts : (S1.evts = S2.evts) \land (S1.optVis(o_Y, o_X)) \Rightarrow (S2.optVis(o_Y, o_X)) \rangle$

Proof: Since the events of S1 and S2 are the same, from Property 1, we get that the computation trees of S1 and S2 are the same. In S1, o_Y is optVis to o_X . This implies that o_Y is either a peer of o_X or a peer of an ancestor of o_X in the computation tree of S1. Since the computation tree of S2 is the same as that of S1, o_Y is either a peer of o_X or a peer of an ancestor of o_X in the computation tree of o_X in the computation tree of S2 as well. Hence o_Y is optVis to o_X in S2 also. Thus we have $S2.optVis(o_Y, o_X)$.

Lemma 8 Consider a schedule S with two nodes n_P, n_Q and two memory operations m_X, m_Y such that m_X is in n_P 's dSet, m_Y is in n_Q 's dSet, n_Q is optVis to m_X and m_Y is not in n_P 's dSet. Then n_Q is optVis to n_P . Formally, $\langle (m_X \in S.dSet(n_P)) \land (m_Y \in S.dSet(n_Q)) \land (S.optVis(n_Q, m_X)) \land (m_Y \notin S.dSet(n_P)) \Rightarrow (S.optVis(n_Q, n_P)) \rangle$ **Proof:** Let the holder of m_X be n_X . We prove this lemma using levels. Let l_P, l_Q, l_X be the levels of n_P, n_Q, n_X respectively. Both n_X and m_X are at the same level. Since n_Q is optVis to $m_X, l_Q \leq l_X$. Let n_B be the parent of n_Q and its level be l_B . Since n_Q is optVis to m_X , from Property 5 we get that n_B is an ancestor of n_X . Thus we get that $l_B = l_Q - 1$ and $l_B < l_X$. Now we have two cases based on the levels:

- $l_P < l_Q$: Here n_P is closer to the root than n_Q . This implies that $l_P \leq (l_Q 1) = l_B$. Since m_X is in n_P 's dSet and $l_P < l_Q \leq l_X$, from Property 4 we get that n_P is an ancestor of m_X . Thus both n_B and n_P are ancestors of n_X . By comparing the levels, we get that n_P is same as n_B or an ancestor of n_B . In either case n_Q is in n_P 's dSet. This implies that m_Y is also in n_P 's dSet. But we are given that m_Y is not in n_P 's dSet. Hence this case is not possible.
- $l_P \ge l_Q$: This case implies that $l_P > l_B$. Since m_X is in n_P 's dSet, from Property 2 we get that $l_P \leq l_X$. From Property 3 and Property 4, we get that n_P is either ancestor of m_X or the holder of m_X . In either case we get that n_B is an ancestor of n_P . Since n_Q is a child of n_B (which is different from n_P), we get that n_Q is a peer of n_P or a peer of an ancestor of n_P which implies that $S.optVis(n_Q, n_P).$

Lemma 9 The optVis relationship is transitive. Consider a schedule S with three nodes n_P, n_Q, n_R such that n_P is optVis to n_Q , n_Q is optVis to n_R . Then n_P is optVis to n_R . Formally, $\langle (S.optVis(n_P, n_Q)) \land (S.optVis(n_Q, n_R)) \Rightarrow (S.optVis(n_P, n_R)) \rangle$

Proof: This can be proved from the definition of optVis.

Writes for Read Operations 2.3

Given a schedule it is necessary to precisely define for each read operation a corresponding write operation. The write operation is such that if it stores a value v in a data buffer, then the read operation will retrieve this value when invoked. For a read operation r_X on a data item z in a schedule S, we call such a write as the *lastWrite*¹ and denote it as $S.lastWrite(r_X(z))$.

Traditionally in single version databases, in a given schedule the lastWrite of a read operation r_X on data-item z is the most recent previous write operation on z in the schedule. But in case of nested transactions for STMs, where there are multiple buffers for a data-item, the lastWrite could potentially be the most recent previous write in any one of these buffers.

As mentioned earlier when a new sub-transaction is invoked (by a parent transaction), the sub-transaction creates a separate set of buffers for each data-item it accesses. On creation these buffers are initialized with \perp . Thus for the read $r_X(z)$ we want its lastWrite $w_Y(z)$ to satisfy the following properties:

- 1. The lastWrite w_Y should occur prior to the read operation r_X in the schedule.
- 2. The lastWrite w_Y should be a commit-write belonging to a committed transaction or a simple-memory operation. Since the read operation can access the z data buffers of all its ancestors, the commit-write on z should be a peer of $r_X(z)$ or a peer of an ancestor of $r_X(z)$, i.e., S.optVis (w_Y, r_X) should be true.

¹This term is inspired from [12]

- 3. The read operation $r_X(z)$ accesses z buffers starting from that of its own transaction. It then accesses its ancestor's z buffer in the decreasing order of level. It reads from the first buffer which has a non- \perp value in it. Thus the lastWrite w_Y is such that the difference between its level and r_X 's level is the smallest.
- 4. If there are multiple writes satisfying the above conditions then among these writes the lastWrite w_Y is the closest to r_X in the schedule S.

Now we will formally describe the notion of lastWrite. We consider the following schedule to describe our definitions. The computation tree for this schedule is in Figure 3.

Example 4

 $\begin{array}{l} \textit{Computation Tree:} \\ t_0: \{t_{init}, t_{01}, t_{02}, t_{03}, t_{fin}\}, \\ t_{01}: \{sm_{011} = r_{011}(x), sm_{012} = w_{012}(y), c_{01}\}, \\ t_{02}: \{t_{021}, sm_{022} = w_{022}(x), t_{023}, t_{024}, c_{02}\}, \\ t_{021}: \{sm_{0211} = r_{0211}(z), sm_{0212} = w_{0212}(x), sm_{0213} = w_{0213}(y), c_{021}\}, \\ t_{023}: \{t_{0231}, t_{0232}, a_{023}\}, \\ t_{0231}: \{sm_{02311} = r_{02311}(x), sm_{02312} = w_{02312}(y), c_{0231}\}, \\ t_{0232}: \{sm_{02321} = r_{02321}(y), sm_{02322} = w_{02322}(x), sm_{02323} = w_{02323}(y), c_{0232}\}, \\ t_{024}: \{sm_{0241} = r_{0241}(x), sm_{0242} = r_{0242}(y), sm_{0243} = w_{0243}(z), c_{024}\}, \\ t_{03}: \{sm_{031} = r_{031}(y), sm_{032} = r_{032}(z), sm_{033} = w_{033}(d), c_{03}\}, \end{array}$

Schedule:

 $S3: r_{011}(x)r_{0211}(z)w_{0212}(x)w_{022}(x)r_{02311}(x)w_{0213}(y)w_{021}^{0212}(x)w_{021}^{0213}(y)c_{021}w_{012}(y)w_{01}^{012}(y)c_{01}w_{02312}(y)\\ w_{0231}^{02312}(y)c_{0231}r_{02321}(y)r_{0241}(x)w_{02322}(x)r_{0242}(y)r_{031}(y)w_{02323}(y)w_{0232}^{02322}(x)w_{0232}^{02323}(y)c_{0232}r_{032}(z)a_{023}\\ w_{0243}(z)w_{024}^{0243}(z)c_{024}w_{02}^{021}(x)w_{02}^{021}(y)w_{02}^{024}(z)c_{02}w_{033}(d)w_{03}^{033}(d)c_{03}$

It must be noted that in the schedule S3 transaction t_{023} is aborted. But both its child transactions t_{0231}, t_{0232} are committed.

For two memory operations in a schedule we define two kinds of distances. We define schDist as $S.schDist(m_X, m_Y) = |S.ord(m_X) - S.ord(m_Y)|$. Next we define levDist as $S.levDist(m_X, m_Y) = |level(m_X) - level(m_Y)|$. For a memory operation $m_X(y)$ in S, we define the following sets: $S.prevW(m_X(y)) = \{w_Y(y) | (w_Y(y) \in S.evts) \land (S.ord(w_Y(y)) < S.ord(m_X(y)))\}$

As the name suggests the set prevW consists of all the y writes that happen before $m_X(y)$ in S irrespective of whether they are simple write or commit-write operations.

 $S.prevVisW(m_X(y)) = \{w_Y(y) | (w_Y(y) \in S.prevW(m_X(y))) \land (S.optVis(w_Y(y), m_X(y)))\}$

This set consists of all the y writes that occur before $m_X(y)$ and are optVis to $m_X(y)$. Since the transaction t_{init} is a child of t_0 , t_{init} is optVis to every other operation in the computation. Hence the set prevVisW of every memory operation will contain a write by t_{init} . As a result, the prevVisW of every memory operation has at least one element. For instance in the schedule S3 mentioned in Example 4,

 $S3.prevVisW(r_{0241}(x)) = \{w_{init}(x), w_{021}^{0212}(x), w_{022}(x)\}$

$$S3.prevVisW(r_{0242}(y)) = \{w_{init}(y), w_{021}^{0213}(y), w_{01}^{012}(y)\}$$

 $S3.prevVisW(r_{02321}(y)) = \{w_{init}(y), w_{021}^{0213}(y), w_{01}^{012}(y), w_{0231}^{02312}(y), \}$

Now we define a set having all the writes that occur before a memory operation, are optVis to it and are

Figure 3: Computation tree for Example 4

closest to it in terms of level.

$$S.prevCloseSet(m_X(y)) = \{w_Y(y) | (w_Y(y) \in S.prevVisW(r_X(y))) \land (S.levDist(w_Y(y), m_X(y))) \\ is smallest\} \}$$

For instance, for the writes of schedule S3 in Example 4 mentioned above, $S3.prevCloseSet(r_{0241}(x)) = \{w_{021}^{0212}(x), w_{022}(x)\}$ $S3.prevCloseSet(r_{0242}(y)) = \{w_{021}^{0213}(y)\}$ $S3.prevCloseSet(r_{02321}(y)) = \{w_{0231}^{02312}(y)\}$

Having defined these sets, we define the lastWrite for a read operation in a schedule as the closest write operation from the prevCloseSet set. Formally,

$$S.lastWrite(m_X(y)) = \{w_Y(y) | (w_Y(y) \in S.prevCloseSet(m_X(y))) \land (S.schDist(m_X(y), w_Y(y)) \text{ is minimum})\}$$

Since the set prevVisW has at least one element, lastWrite is never nil. In the worst case a read operation will read the values written by t_{init} . The lastWrites for all the reads in S3 of Example 4 are as follows: $\{r_{011}(x) : w_{init}(x), r_{0211}(z) : w_{init}(z), r_{02311}(x) : w_{022}(x), r_{02321}(y) : w_{0231}^{02312}(y), r_{0241}(x) : w_{021}^{0212}(x), r_{0242}(y) : w_{021}^{0213}(y), r_{031}(y) : w_{01}^{012}(y), r_{032}(z) : w_{init}(z)\}$

An important requirement of a STM is that no transaction reads from an aborted transaction. Intuitively this implies that the lastWrite of no read operation belongs to an aborted transaction's dSet. Consider the read $r_{02321}(y)$. Its lastWrite is $w_{0231}^{02312}(y)$ which belongs to t_{023} 's dSet. Transaction t_{023} is aborted. In this case it might seem that the read $r_{02321}(y)$ is reading from an aborted transaction. But $w_{0231}^{02312}(y)$ actually belongs to t_{0231} 's dSet which is a committed transaction. Further $r_{02321}(y)$ also belongs to t_{023} . Thus the properties that we want of aborted transactions have not been violated. We have the following property and lemma which formalizes this notion:

Property 10 Consider a schedule S which has a read r_X . Let the lastWrite of r_X be w_Y . Then the holder of w_Y can not be an aborted transaction. Formally, $\langle S: r_X \in S.evts: (w_Y = S.lastWrite(r_X)) \Rightarrow (S.holder(w_Y) \text{ is not aborted}) \rangle$

Lemma 11 Consider a schedule S which has a read r_X . Let the lastWrite of r_X be w_Y . If an ancestor of w_Y , say t_A , is aborted then r_X is in t_A 's dSet. Formally,

 $\langle S: r_X \in S.evts, t_A \in S.nodes: (w_Y = S.lastWrite(r_X)) \land (t_A \in S.ansc(w_Y)) \land (t_A \text{ is aborted}) \Rightarrow (r_X \in S.dSet(t_A)) \rangle$

Proof: Let the parent of w_Y be t_P . From Property 5, we get that t_P is an ancestor of r_X . Hence, any ancestor of w_Y is an ancestor of r_X . This implies that t_A is an ancestor of r_X . Thus, r_X is in the dSet of t_A .

Informally this lemma implies that no transaction outside an aborted transaction reads from it. Now consider the read operation $r_{0242}(y)$ in S3 of Example 4. Its lastWrite is $w_{021}^{0213}(y)$. But in S3 there is a write $w_{01}^{012}(y)$ which is optVis to $r_{0242}(y)$ and occurs before it. Moreover w_{01}^{012} is closer to $r_{0242}(y)$ in schDist

than $w_{021}^{0213}(y)$ i.e. $S3.schDist(r_{0242}(y), w_{021}^{0213}(y)) > S3.schDist(r_{0242}(y), w_{01}^{012}(y))$. So intuitively it might seem that $w_{01}^{012}(y)$ should be the lastWrite. But $w_{021}^{0213}(y)$ is closer to $r_{0242}(y)$ in terms of level than w_{01}^{012} (condition 3 of the properties required by lastWrite) i.e. $S3.levDist(r_{0242}(y), w_{021}^{0213}(y)) < S3.levDist(r_{0242}(y), w_{01}^{012}(y))$. Hence $w_{021}^{0213}(y)$ is the lastWrite. The following two properties describe this notion formally,

Property 12 Consider a schedule S with memory operations w_Z, w_Y, r_X such that w_Z occurs prior to w_Y in S, w_Z is optVis to r_X and w_Y is the lastWrite of r_Y . Then w_Z 's level should be less than or equal to w_Y 's level. Formally,

 $\langle S : \{w_Z, w_Y, r_X\} \in S.evts : (S.ord(w_Z) < S.ord(r_X)) \land S.optVis(w_Z, r_X) \land (w_Y = S.lastWrite(r_X)) \Rightarrow (S.level(w_Z) \leqslant S.level(w_Y)) \rangle$

Property 13 Consider a schedule S with memory operations w_Z, w_Y, r_X such that w_Z 's level is same as w_Y 's level, w_Z occurs prior to r_X in S, w_Z is optVis to r_X and w_Y is the lastWrite of r_X . Then w_Z also occurs prior to w_Y in S. Formally,

 $\langle S : \{w_Z, w_Y, r_X\} \in S.evts : (S.level(w_Z) = S.level(w_Y)) \land (S.ord(w_Z) < S.ord(r_X)) \land S.optVis(w_Z, r_X) \land (w_Y = S.lastWrite(r_X)) \Rightarrow (S.ord(w_Z) < S.ord(w_Y) < S.ord(r_X))$

We would like to make a note about the definition of optVis. Consider a read operation $r_X(z)$ and a committed transaction t_Y in a schedule S. Let r_X be in t_Y 's dSet. Then by our convention all the commitwrites of t_Y occur after r_X has executed in the S. Thus no commit-write of t_Y can be the lastWrite of r_X . Due to this property we defined optVis such that any write w_Y is not optVis to r_X if r_X is contained in t_Y 's dSet. Formally,

 $\langle S : \{r_X, w_Y, t_Y\} \in S.evts : (r_X \in S.dSet(t_Y)) \land (w_Y \in t_Y$'s commit-set) $\Rightarrow (S.optVis(w_Y, r_X) = false) \rangle$

For a node n_P with a read operation r_X in its dSet, the read is said to be an *external-read* of n_P if its lastWrite is not in n_P 's dSet. For instance, $r_{0241}(x)$ is an external-read of t_{024} since its lastWrite $w_{021}^{0212}(x)$ is not in t_{024} 's dSet. The read $r_{02321}(y)$ is not an external-read of the transaction t_{023} since its lastWrite $w_{0231}^{02312}(y)$ belongs to t_{023} 's dSet. From this definition we get that every read operation is an external-read of itself. Thus, $r_{0241}(x)$ is an external-read of itself. It can be seen that a nested transaction interacts with its peers through external-reads and commit-writes. Thus, a nested transaction can be treated as a non-nested transaction consisting only of its external-reads and commit-writes. The external-reads and commit-writes of a transaction constitute its *extOpsSet*.

A schedule is called *well-formed* if it satisfies: (1) Validity of Transaction limits: After a transaction executes a terminal operation no operation (memory or terminal) belonging to it can execute; and (2) Validity of Read Operations: Every read operation reads the value written by its lastWrite operation. We assume that all the schedules we deal with are well-formed.

2.4 Serial Schedules for Closed Nested Transactions

In this section we talk about serial schedules in the context of nested transactions.

Schedule Partial Order: A schedule totally orders all the events of a transaction. Further it partially orders all the transactions and simple-memory operations. For a schedule S and a transaction t_X in it, we define $S.t_X.first$ as the first operation of t_X that executes according to S. Similarly we define $S.t_X.last$ as the last operation of t_X (i.e., a terminal operation) to execute according to S. For a simple-memory

operation, $S.m_X.first = S.m_X.last$. With these definitions we can define a partial order on all the nodes in the computation tree represented by the schedule: $(n_X <_S n_Y) \equiv (S.n_X.last < S.n_Y.first)$

We call this order as the *schedule-partial-order*. It must be noted that all the memory operations having the same parent are totally ordered.

Serial Schedules: For the case of non-nested transactions a serial schedule is a schedule in which all the transactions execute serially (as the name suggests) without any interleaving. Serial schedules are very useful because their executions are easy to verify since there is no interleaving. For a closed nested STM system we define a serial schedule as follows:

Definition 3 A schedule SS is called serial if for every transaction t_X in SS, the children (both transactions and simple-memory operations) of SS are totally ordered. Formally, $\langle \forall t_X \in SS.nodes : \{n_Y, n_Z\} \subseteq S.children(t_X) : (n_Y <_{SS} n_Z) \lor (n_Z <_{SS} n_Y) \rangle$

From the definition of a serial schedule we get the following property:

Property 14 Consider two peer nodes, n_X, n_Y in a serial schedule SS. Let m_R be a memory operation belonging to n_X 's dSet and m_S be a memory operation belonging to n_Y 's dSet. If m_R occurs before m_S in SS, then all the memory operations in n_X 's dSet occur before all the memory operations of n_Y 's dSet. Formally,

 $\begin{array}{l} \langle \{n_X, n_Y\} \in SS.nodes : (m_R \in SS.dSet(n_X)) \land (m_S \in SS.dSet(n_Y)) : (SS.parent(n_X) = SS.parent(n_Y)) \land (SS \text{ is serial}) \land (SS.ord(m_R) < SS.ord(m_S)) \Rightarrow (\forall m_P, \forall m_Q : (m_P \in SS.dSet(n_X)) \land (m_Q \in SS.dSet(n_Y)) : (SS.ord(m_P) < SS.ord(m_Q)) \\ \end{array}$

3 Conflict Preserving Closed Nested Opacity

In this section, we (i) define opacity for closed nested transactions, represented by a class of schedules *CNO*, (ii) present a new conflict notion *optConf* for closed nested transactions (iii) define *CP-CNO*, a subclass of CNO based on optConf and then (iv) present an algorithm for verifying the membership of this class in polynomial time.

3.1 Closed Nested Opacity

A STM system allows interleaving between transactions to efficiently utilize the system resources. But the STM system should also ensure that the interleaving transactions execute in correct manner. In the context of traditional databases the correctness criterion for the execution of concurrent transactions is *serializability* [18]. Serializability ensures that the execution of all the committed transactions corresponds to a serial execution. But serializability does not specify the correctness of aborted transactions. In STM systems where transactions execute in memory it is imperative that all transactions including aborted transactions execute correctly. Incorrect execution of aborted transactions could result in the STM system entering into an inconsistent state. This could result in many errors such as crash failures, division-by-zero etc. as described in Section 1.

To address this shortcoming Guerraoui and Kapalka [5] came up with the notion of *opacity*. A schedule, consisting of an execution of transactions, is said to be *opaque* if there is an equivalent serial schedule such that it respects the original schedule's schedule-partial-order and the lastWrites for every read operation

(including the reads of aborted transactions) in the serial schedule is the same as in the original schedule. To effectively capture this notion, Imbs and Raynal [9] treat all the aborted transactions in a given schedule as read-only transactions. Then in the resulting schedule they try to find an equivalent serial schedule satisfying the above mentioned conditions.

In our characterization of schedules, the effects of aborted transactions are not visible to other transactions. No read operation outside an aborted transaction can read from the aborted transaction. Thus in our model aborted transactions can be viewed as read-only transactions. With this model, the notion of opacity can be extended to closed nested transactions in a straightforward manner. We define a class of schedules called as *Closed Nested Opacity* or *CNO* as follows:

Definition 4 A schedule S belongs to Closed Nested Opacity (CNO) class if there exists a serial schedule SS such that:

- 1. Event Equivalence: The events of S and SS are the same. Formally, $\langle (S.evts = SS.evts) \rangle$
- 2. schedule-partial-order Equivalence: For any two nodes n_Y, n_Z that are peers in the computation tree represented by S if n_Y occurs before n_Z in S then n_Y occurs before n_Z in SS as well. Formally, $\langle t_X : \{n_Y, n_Z\} \subseteq S.children(t_X) : (n_Y <_S n_Z) \Rightarrow (n_Y <_{SS} n_Z) \rangle$
- 3. lastWrite Equivalence: For all read operations the lastWrites in S and SS are the same. Formally, $\langle S, SS : \forall r_X : S.lastWrite(r_X) = SS.lastWrite(r_X) \rangle$

Even though the definition of CNO is similar to opacity, the condition lastWrite equivalence captures the intricacies of nested transactions. This class ensures that the reads of all the transactions including all the sub-transactions of aborted transactions read consistent values. We denote this equivalence between a schedule S and a serial schedule SS as $S \approx_o SS$.

3.2 Conflict Notion: optConf

Checking opacity, like general serializability (for instance, view-serializability) cannot be done efficiently. Restricted classes of serializability (like conflict-serializability) have been defined based on conflicts which allow polynomial membership test, and facilitate online scheduling. Along the same lines, we define a subclass of CNO, CP-CNO.

This subclass is based on the notion of conflicts. Two memory operations operating on the same dataitem are said to be in conflict if one of them is a write operation (and the other is either a read or write operation). We extend the notion of conflicts to closed nested transactions. We call this conflict notion as *optConf* (conflict for optimistic executions). It is tailored for optimistic execution of sub-transactions. This notion is similar to the idea of conflicts presented in [4] for non-nested transactions. In this section we present *Conflict Preserving Closed Nested Opacity* or *CP-CNO* a subclass of CNO based on optConf notion for closed nested transactions.

Consider a schedule S and a serial schedule SS with the same set of events as S. We show that, if the set of optConfs between the events in S are also in SS, then the lastWrite for every read is also the same in S and SS. It must be noted that since the set of events (and transactions) are the same in S and SS, from Property 1 we get that their computation trees are also the same. As a result if an operation o_X is at level l_X in S, then its level in SS is also l_X .

The conflict notion optConf is defined only between memory operations in extOpsSets (defined in SubSection2.3) of two peer nodes. As explained earlier, a node (or transaction) interacts with its peer

Figure 4: Example illustrating w-r and r-w conflicts

nodes through its extOpsSet. Consider two peer nodes n_A, n_B . For two memory operations m_X, m_Y in the extOpsSets of n_A, n_B , $S.optConf(m_X, m_Y)$ is true if m_X occurs before m_Y in S and one of the following conditions hold:

- 1. w-r optConf: m_X is a commit-write w_X of n_A and m_Y is an external-read r_Y in n_B 's dSet or
- 2. r-w optConf: m_X is an external-read r_X in n_A 's dSet, m_Y is a commit-write w_Y of n_B or
- 3. w-w optConf: m_X is a commit-write w_X of n_A and m_Y is a commit-write w_Y of n_B .

Figure 4 illustrates the conflicts for a read r_X . Here w_L and n_P are peers with r_X in n_P 's dSet and the lastWrite of r_X is w_L . In the figure on the left, w_Y is a peer of w_L and n_P . This figure illustrates w-r conflict between w_Y and r_X . The dotted line shows the conflict.

The figure on the right of Figure 4 illustrates r-w conflict. In this figure, w_Y belongs to n_P 's dSet and is a peer of n_Q . The commit-write w_Z is a peer of n_P . The read r_X is in n_Q 's dSet and in n_P 's dSet with n_P being an ancestor of n_Q . Since r_X 's lastWrite is not in n_Q 's dSet and also not in n_P 's dSet, it is an external-read of both n_Q and n_P . Hence r_X is in r-w optConf with both w_Y and w_Z .

Now, we will motivate the reason for defining the conflicts in this manner. Consider a read $r_X(d)$ in a schedule S with lastWrite as $w_L(d)$. Let $w_A(d)$ be an arbitrary write in S that is optVis to $r_X(d)$. Let their levels be l_X, l_L, l_A respectively. From optVis definition we get that, $l_L \leq l_X$ and $l_A \leq l_X$ and these relationships hold in SS as well (since the set of events in S and SS are the same). The conflicts are defined such that w_A does not become r_X 's lastWrite in any conflict equivalent serial schedule SS. The following paragraphs explain this.

For w_L to be the lastWrite of r_X in SS, w_L must occur before r_X in SS as well. This is ensured by w-r optConf. Now, let us analyse the motive of r-w optConf. From the definition of lastWrite, we get that if $l_A < l_L$ (i.e, w_A is closer to the root than w_L) then w_A can never be the lastWrite of r_X in SS. Hence, it suffices to define r-w conflict only between the read r_X and any such w_A whose level l_A is greater than or equal to l_L . We do not need to consider conflicts between read and writes that are at level smaller than its lastWrite (i.e. closer to the root than the lastWrite).

Consider the case that $l_A \ge l_L$. Consider two peer nodes n_P, n_Q (which are at the same level in the tree since they are peers). Let r_X be in n_P 's dSet and w_A in n_Q 's dSet. Also, let r_X occur before w_A in S. Since w_A is optVis to r_X, w_A must be n_Q 's commit-write (if n_Q is a simple-memory operation then it is same as w_A). Otherwise, w_A can not be optVis to r_X . As a result, the levels of n_P , n_Q and w_A are the same. From our assumption, we have that w_A 's level is greater than or equal to l_L . Hence, n_P 's level is greater than or equal to l_L as well. From Property 2 we get that, r_X 's lastWrite w_L can not be in n_P 's dSet. As a result, r_X is an external-read of n_P . Thus by defining r-w conflict between such r_X and w_A we ensure that w_A can never be r_X 's lastWrite in any conflict equivalent serial schedule SS.

Now consider the case that the write w_A occurs before w_L and r_X in S. Let w_A 's level l_A be same as l_L . Combining this with the observation that w_A and w_L are optVis to r_X , we get that w_A and w_L are peers. It must be noted that w-r conflict ensures that w_A occurs before r_X in SS. But it is possible that w_A occurs between w_L and r_X in SS. Then w_A becomes r_X 's lastWrite in SS. The w-w conflict ensures that w_A occurs before w_L in SS as well. Thus all the three conflicts ensure that w_L is r_X 's lastWrite in SS as well. The set of conflicts for the schedule S3 mentioned in Example 4 are:

 $\{ (r_{011}(x), w_{02}^{021}(x)), (r_{0211}(z), w_{024}^{0243}(z)), (w_{022}(x), w_{021}^{0212}(x)), (w_{022}(x), r_{02311}(x)), (r_{02311}(x), w_{021}^{0212}(x)), (r_{02311}(x), w_{0232}^{0212}(x)), (w_{021}^{0213}(y), r_{0242}(y)), (w_{01}^{012}(y), r_{031}(y)), (w_{01}^{012}(y), w_{02}^{021}(y)), (r_{02311}(x), w_{021}^{0212}(x)), (w_{0231}^{0212}(x), r_{02311}(x)), (w_{0231}^{02312}(y), r_{02321}(y)), (w_{0231}^{02323}(y)), (w_{0232}^{0212}(x), r_{0241}(x)), (w_{022}(x), r_{0241}(x)), (r_{031}(y), w_{021}^{0212}(y)), (r_{032}(z), w_{022}^{022}(z)) \}$

The conflicts involving t_{init} and t_{fin} are not shown here. Now, we describe a property about w-r conflict and a lemma about r-w conflict,

Property 15 If the lastWrite of read r_X in S is w_Y then w_Y and r_X are in w-r optConf. Formally, $\langle (w_Y = S.lastWrite(r_X)) \Rightarrow (S.optConf(w_Y, r_X)) \rangle$

Lemma 16 Consider a write w_A and a read r_X in a schedule S. Let r_X 's lastWrite be w_L . Let the levels of r_X, w_A, w_L be l_X, l_A, l_L respectively. If l_L is less than or equal to l_A and w_A is optVis to r_X and r_X occurs before w_A in S then S.optConf (r_X, w_A) is true. Formally, $(w_L = S.lastWrite(r_X)) \land (l_L \leq l_A) \land (S.optVis(w_A, r_X)) \land (S.ord(r_X) < S.ord(w_A)) \Rightarrow$ $(S.optConf(r_X, w_A))$

Proof: Let holder of w_A be n_A (which is same as w_A , if it is a simple-write). Since w_A is optVis to r_X , there is a peer n_B of n_A such that r_X is in n_B 's dSet. Since n_A, n_B are peers we get that $level(w_A) = level(n_A) = level(n_B) = l_A$. Here we have two cases depending on the levels of w_L and w_A .

- case 1 $l_L < l_A$: This case implies that $l_L < level(n_B)$. Combining this with the contrapositive of Property 2, we get that w_L is not in n_B 's dSet. But r_X is in n_B 's dSet. Hence r_X is an external-read of n_B .
- case 2 $l_L = l_A$: This case implies that $l_L = level(n_B)$. Consider the case that w_L is in n_B 's dSet. Then from Property 3, we get that holder of w_L is same as n_B 's holder. This is possible only when w_L is n_B 's commit-write. Since w_L is lastWrite of r_X , it occurs before r_X in S. This implies that w_L is not a commit-write of n_B . This is possible only when w_L is not in n_B 's dSet. Hence r_X is an external-read of n_B .

Thus in both the cases, we get that r_X is an external-read of n_B . From our assumptions we have that n_A, n_B are peers, w_A is a commit-write of n_A , and we are given that $(S.ord(r_X) < S.ord(w_A))$. These are the conditions of r-w conflict. Hence, $S.optConf(r_X, w_A)$ is true.

Based on this conflict definition, we define a class of schedules called as *Conflict Preserving Closed Nested Opacity* or *CP-CNO*.

Definition 5 A schedule S belongs to CP-CNO class if there exists a serial schedule SS such that:

- 1. Event Equivalence: The events of S and SS are the same. Formally, $\langle (S.evts = SS.evts) \rangle$
- 2. schedule-partial-order Equivalence: For any two nodes n_Y, n_Z that are peers in the computation tree represented by S if n_Y occurs before n_Z in S then n_Y occurs before n_Z in SS as well. Formally, $\langle t_X : \{n_Y, n_Z\} \subseteq S.children(t_X) : (n_Y <_S n_Z) \Rightarrow (n_Y <_{SS} n_Z) \rangle$
- 3. optConf Implication: if two memory operations in S are in optConf then they are also in optConf in SS. Formally,

 $\langle \forall m_Y, \forall m_Z : \{m_Y, m_Z\} \subseteq S.evts : (S.optConf(m_Y, m_Z) \Rightarrow SS.optConf(m_Y, m_Z)) \rangle$

We denote this equivalence to such a serial schedule as $(S \approx_{oc} SS)$. As we can see, the class CP-CNO is different from CNO only in condition 3. We prove this equivalence also ensures that lastWrites are the same i.e. class CP-CNO is a subset of CNO.

Theorem 17 If a schedule S is in the class CP-CNO then it is also in CNO. Formally, $\langle (S \in CP\text{-}CNO) \Rightarrow (S \in CNO) \rangle$

Proof: Since $S \in CP$ -CNO, we know that there exists a serial schedule SS such that $S \approx_{oc} SS$. We will prove that the lastWrite for every read operation in SS is same as in S. We will prove this using contradiction. Consider a read r_X . Let $(w_Y = S.lastWrite(r_X)) \neq (w_Z = SS.lastWrite(r_X))$. Let $S.parent(w_Y) = t_P$ and $S.parent(w_Z) = t_Q$. Since w_Y is the lastWrite of r_X in S, from the definition of optConf and Property 15, we get that $S.optConf(w_Y, r_X)$ is true which also implies $SS.optConf(w_Y, r_X)$ is true. Thus from the definition of optConf we get that w_Y occurs prior to r_X in SS. Formally,

$$\langle (w_Y = S.lastWrite(r_X)) \xrightarrow{Property \ 15} S.optConf(w_Y, r_X) \xrightarrow{S\approx_{oc}SS} \\ SS.optConf(w_Y, r_X) \xrightarrow{optConf} (SS.ord(w_Y) < SS.ord(r_X)) \rangle$$
(1)

From the definition of lastWrite we have that

$$(w_Y = S.lastWrite(r_X)) \Rightarrow S.optVis(w_Y, r_X) \xrightarrow{S.evts = SS.evts,} SS.optVis(w_Y, r_X))$$
(2)

$$(w_Z = SS.lastWrite(r_X)) \Rightarrow SS.optVis(w_Z, r_X) \xrightarrow{S.evts = SS.evts,} S.optVis(w_Z, r_X))$$
(3)

D

Consider Eqn(1) and Eqn(2). We have that w_Y occurs prior to r_X in SS and SS.optVis(w_Y, r_X). Further we have that w_Z is the lastWrite of r_X in SS. Combining these with Property 12 we get that $SS.level(w_Z)$ is greater than or equal to $SS.level(w_Y)$. Formally,

$$\langle (SS.ord(w_Y) < SS.ord(r_X)) \land SS.optVis(w_Y, r_X) \land (w_Z = SS.lastWrite(r_X)) \xrightarrow{Property \ 12} \\ (SS.level(w_Z) \ge SS.level(w_Y)) \xrightarrow{SS.evts = S.evts} (S.level(w_Z) \ge S.level(w_Y)) \rangle$$
(4)

Now we have two cases based on the positions of w_Z, r_X in S.

Case 1 $S.ord(w_Z) < S.ord(r_X)$: Here w_Z also occurs before r_X in S. Similar to the argument of Eqn(4), combining Eqn(3) with this case we get that level of w_Y in S and SS is greater than equal to w_Z 's level,

$$\langle (S.ord(w_Z) < S.ord(r_X)) \land S.optVis(w_Z, r_X) \land (w_Y = S.lastWrite(r_X)) \xrightarrow{Property 12} \\ (S.level(w_Y) \geqslant S.level(w_Z)) \xrightarrow{SS.evts = S.evts} (SS.level(w_Y) \geqslant SS.level(w_Z)) \rangle$$
(5)

Combining Eqn(4) with Eqn(5) we get that level of w_Y in S and SS is equal to w_Z 's level,

$$(S.level(w_Z) \ge S.level(w_Y)) \land (S.level(w_Y) \ge S.level(w_Z)) \Rightarrow (S.level(w_Z) = S.level(w_Y))$$

$$\xrightarrow{SS.evts = S.evts} (SS.level(w_Z) = SS.level(w_Y)) \quad (6)$$

This gives us that the levels are the same. Combining this result with the information of S i.e. w_Z occurs prior to r_X in S, w_Z is optVis to r_X and w_Y is the lastWrite of r_X in S and Property 13 we get that w_Z occurs prior to w_Y in S. Formally,

$$\langle (S.level(w_Z) = S.level(w_Y)) \land (S.ord(w_Z) < S.ord(r_X) \land S.optVis(w_Z, r_X) \land \\ (w_Y = S.lastWrite(r_X)) \xrightarrow{Property \ 13} (S.ord(w_Z) < S.ord(w_Y)) \rangle$$
(7)

Similarly combining Eqn(6) with the information about SS, we get that w_Y occurs prior to w_Z in SS.

$$\langle (SS.level(w_Z) = SS.level(w_Y)) \land (SS.ord(w_Y) < SS.ord(r_X) \land SS.optVis(w_Y, r_X) \land \\ (w_Z = SS.lastWrite(r_X)) \xrightarrow{Property \ 13} (SS.ord(w_Y) < SS.ord(w_Z)) \rangle$$
(8)

From Eqn(2) we have that w_Y is optVis to r_X in S and from Eqn(3) we have that w_Z is optVis to r_X in S. In Eqn(6) we obtained that level of w_Z is same as w_Y 's level in S. Combining these results with Property 6 we get that parent of w_Z is same as w_Y in S,

$$\langle S.optVis(w_Y, r_X) \land S.optVis(w_Z, r_X) \land (S.level(w_Z) = S.level(w_Y)) \\ \xrightarrow{Property 6} (S.parent(w_Y) = S.parent(w_Z)) \rangle$$
(9)

Now combining Eqn(7), which states that w_Z occurs before w_Y in S, with the result obtained just above in Eqn(9) we get that w_Z is in optConf with w_Y in S. From $S \approx_{oc} SS$, we get that this is also true in SS. Hence w_Z should also occur prior to w_Y in SS,

$$\langle (S.parent(w_Y) = S.parent(w_Z)) \land ((S.ord(w_Z) < S.ord(w_Y))) \xrightarrow{optConf} (S.optConf(w_Z, w_Y)) \xrightarrow{S \approx_{oc}SS} (S.optConf(w_Z, w_Y)) \xrightarrow{optConf} ((SS.ord(w_Z) < SS.ord(w_Y))) \rangle$$
(10)

But this result contradicts with Eqn(8) which states that w_Y should occur prior to w_Z in SS. Hence this case is not possible.

Case 2 $S.ord(r_X) < S.ord(w_Z)$: In this case r_X occurs before w_Z in S.

Eqn(3) states w_Z is optVis to r_X in S. From Eqn(4) we have that level of w_Z is greater than or equal to level of w_Y which is the lastWrite of r_X in S. Combining all these with the current case we obtain that r_X , w_Z are in optConf in S. From $S \approx_{oc} SS$, we get that this is also true in SS. Hence w_Z should occur after r_X in SS,

$$(S.ord(r_X) < S.ord(w_Z)) \land (S.level(w_Z) \ge S.level(w_Y)) \land S.optVis(w_Z, r_X) \land (w_Y = S.lastWrite(r_X)) \xrightarrow{Lemma \ 16} (S.optConf(r_X, w_Z)) \xrightarrow{S\approx_{oc}SS} (SS.optConf(r_X, w_Z)) \xrightarrow{optConf} (SS.ord(r_X) < SS.ord(w_Z)) \rangle$$
(11)

Thus w_Z cannot be lastWrite of r_X in SS which again is a contradiction. Hence this case is also not possible and rules out all cases.

This implies that $(w_Z \neq SS.lastWrite(r_X))$.

Now we give an example of a schedule which is in CNO but not in CP-CNO. Consider the following computation tree and schedule:

Example 5 Computation Tree:

$$\begin{split} t_{0} &: \{t_{init}, t_{01}, t_{02}, t_{03}, t_{fin}\}, \\ t_{01} &: \{sm_{011} = r_{011}(x), sm_{012} = w_{012}(y), c_{01}\}, \\ t_{02} &: \{sm_{021} = r_{021}(y), sm_{022} = w_{022}(y), c_{02}\}, \\ t_{03} &: \{sm_{031} = r_{031}(z), sm_{032} = w_{032}(y), c_{03}\} \\ Schedule: \\ S4 &: r_{011}(x)r_{021}(y)w_{012}(y)w_{01}^{012}(y)c_{01}w_{022}(y)w_{02}^{022}(y)c_{02}r_{031}(z)w_{032}(y)w_{03}^{032}(y)c_{03} \end{split}$$

Figure 5 shows the computation tree corresponding to S4. An equivalent opaque serial schedule is: $S5: r_{021}(y)w_{022}(y)w_{02}^{022}(y)c_{02}r_{011}(x)w_{012}(y)w_{01}^{012}(y)c_{01}r_{031}(z)w_{032}(y)w_{03}^{032}(y)c_{03}$

The set of optConfs in S4: $\{(r_{021}(y)), w_{01}^{012}(y)), (r_{021}(y)), w_{022}(y)), (r_{021}(y)), w_{03}^{032}(y)), (w_{01}^{012}(y), w_{02}^{022}(y)), (w_{01}^{012}(y), w_{03}^{032}(y)), (w_{02}^{012}(y), w_{03}^{032}(y)), (w_{02}^{012}(y), w_{03}^{032}(y))\}$

But there is no optConf equivalent serial schedule for this example. In the next section we will show this using the graph construction algorithm. This shows that CP-CNO \subset CNO.

In many of the existing STM systems proposed (for non-nested transactions), whenever a conflict is detected between a read and a write operation of two transactions, one of the transactions is aborted [9]. It can be verified that the set of schedules accepted by such a system is a subclass of CP-CNO. By defining optConf only between external-reads and commit-writes as opposed to any arbitrary read and write, the class CP-CNO is as non-restrictive as possible.

Figure 5: The computation tree for Example 5

3.3 Algorithm

Now, we describe the algorithm for testing the membership of the class CP-CNO in polynomial time. Our algorithm is based on the graph construction algorithm by Resende and Abbadi [15]. For a schedule S, the algorithm computes a conflict graph (also referred as serialization graph) based on optConfs, denoted as S.optGraph, and checks for the acyclicity of the graph constructed. We call this as optGraphCons algorithm. The graph S. optGraph is constructed as follows: (1) Vertices: It comprises of all the nodes in the computation tree. The vertex for a node n_X is denoted as v_X . (2) Edges: Consider each transaction t_X starting from t_0 . For each pair of children n_P , n_Q , (other than t_{init} and t_{fin}) in S.children (t_X) we add an edge from vertex v_P (corresponding to n_P) to vertex v_Q (corresponding to n_Q) as follows:

- 1. Completion edges: if $n_P <_S n_Q$
- 2. Conflict edges: For any two memory operations, m_Y, m_Z such that m_Y is in n_P 's dSet and m_Z is in n_Q 's dSet, an edge from n_P to n_Q if $S.optConf(m_Y, m_Z)$ is true.

Then the algorithm checks for the acyclicity of the graph S.optGraph constructed. Since the position of the transactions t_{init} and t_{fin} are fixed in the tree and in any schedule, we do not consider them in our graph construction algorithm. It must be noted that in our graph construction all the edges are between vertices corresponding to peer nodes. There are no edges between vertices that correspond to nodes of different levels. Thus the graph constructed consists of disjoint subgraphs. Applying this algorithm on the schedule of S3 of Example 4 we get the graph shown in Figure 6. In Figure 7 we show the serialization graph for the schedule S4 of Example 5. As one can see this graph has a cycle caused by the conflicts: $(w_{01}^{012}(y), w_{02}^{022}(y))$ and $(r_{021}(y), w_{01}^{012}(y))$. Hence this schedule is not in CP-CNO. Now we prove that if S is in CP-CNO then the graph constructed is acyclic.

Proposition 18 Consider a graph g_1 , which is a subgraph of another graph g_2 . If g_1 is cyclic then g_2 is also cyclic. Formally, $\langle (q1 \subseteq q2) \land (q1 \text{ is cyclic}) \Rightarrow (q2 \text{ is cyclic}) \rangle$

Figure 6: The serialization graph for the schedule in Example 4. Only the subgraphs of nested transactions are show here.

Figure 7: The serialization graph for the schedule in Example 5. Only the subgraph of the nested transaction t_0 is show here.

From graph theory we get the above property. Next we get the following property and lemmas from optGraphCons algorithm.

Property 19 Consider a schedule S, and the corresponding graph, S.optGraph, constructed by optGraph-Cons algorithm. Let it contain two vertices v_R (corresponding to the tree node n_R) and v_S (corresponding to the tree node n_S). If there is an edge from v_R to v_S then the tree nodes n_R and n_S have the same parent.

Lemma 20 Consider a serial schedule SS, its serialization graph SS.optGraph constructed using opt-GraphCons algorithm. Let it contain two vertices v_R (corresponding to the tree node n_R) and v_S (corresponding to the tree node n_S). If there is an edge from v_R to v_S then the last event of n_R in SS occurs before the first event of n_S in SS.

Proof: From the construction of SS.optGraph as observed in Property 19 we have that there is a transaction t_P which is the parent of n_R and n_S . Now we have two cases depending on the type of edge connecting from v_R to v_S .

- Completion edge: From the definition of completion edge, we directly get that $SS.ord(SS.n_R.last) < SS.ord(SS.n_S.first)$.
- Conflict edge: From the definition of conflict edge, we have that, $\langle (\exists m_X, m_Y : (m_X \in SS.dSet(n_R)) \land (m_Y \in SS.dSet(n_S)) \land (SS.parent(n_R) = SS.parent(n_S)) \land$

 $\begin{array}{l} (SS.optConf(m_X,m_Y))) \xrightarrow[definition]{optConf} \\ ((\exists m_X,m_Y:(m_X\in SS.dSet(n_R)) \land (m_Y\in SS.dSet(n_S)) \land (SS.parent(n_R)) \land (SS.ord(m_X) < SS.ord(m_Y))) \\ (SS.parent(n_R) = SS.parent(n_S)) \land (SS.ord(m_X) < SS.ord(m_Y)) \\ \\ \text{Applying Property 14 on this result we get that } SS.ord(SS.n_R.last) < SS.ord(SS.n_S.first) \end{array}$

Lemma 21 For a serial schedule SS, SS.optGraph is acyclic.

Proof: We will prove this using contradiction. Let SS.optGraph be cyclic. Let a cycle in SS.optGraph be composed of k vertices, $v_{X1} \rightarrow v_{X2} \rightarrow ... \rightarrow v_{Xk} \rightarrow v_{X1}$. Now from Lemma 20 we get that, $(SS.ord(SS.n_{X1}.last) < SS.ord(SS.n_{X2}.first) < SS.ord(SS.n_{X2}.last) < SS.ord(SS.n_{X3}.first) < ... < SS.ord(SS.n_{X1}.first) < SS.ord(SS.n_{X1}.last)) \Rightarrow (SS.ord(SS.n_{X1}.last) < SS.ord(SS.n_{X1}.last))$ This is not possible. Hence SS.optGraph cannot be cyclic.

Lemma 22 Consider a schedule S and a serial schedule SS such that $(S \approx_{oc} SS)$. Then S.optGraph is a subgraph of SS.optGraph. Formally, $\langle (S \approx_{oc} SS) \land (SS \text{ is serial}) \Rightarrow (S.optGraph \subseteq SS.optGraph) \rangle$

Proof: To prove this we have to show that, if $(S \approx_{oc} SS)$ then $(S.optGraph.v = SS.optGraph.v) \land (S.optGraph.e \subseteq SS.optGraph.e)).$

From optGraphCons algorithm we get that every vertex in the graph corresponds to a computation tree node. Since $(S \approx_{oc} SS)$, the set of events and transactions of S are the same as SS. Hence we get (S.optGraph.v = SS.optGraph.v).

Now coming to the edges, any edge in S.optGraph corresponds to either a completion or conflict edge between peer nodes in S. From \approx_{oc} equivalence we get that these relationships also exist in SS. Hence these edges also exist in SS.optGraph. Thus we have $(S.optGraph.e \subseteq SS.optGraph.e)$. This implies $(S.optGraph \subseteq SS.optGraph)$.

Lemma 23 Let S be a schedule for which there is a serial schedule SS such that $(S \approx_{oc} SS)$. Then S.optGraph is acyclic. Formally, $\langle (S \approx_{oc} SS) \land (SS \text{ is serial}) \Rightarrow (S.optGraph \text{ is acyclic}) \rangle$

Proof: We will prove this using contradiction. Let *S.optGraph* be cyclic. We have,

 $(S \approx_{oc} SS) \land (SS \text{ is serial}) \land (S.optGraph \text{ is cyclic})$

 \Rightarrow { Lemma 22 }

 $(S.optGraph \subseteq SS.optGraph) \land (SS \text{ is serial}) \land (S.optGraph \text{ is cyclic})$

 \Rightarrow { Property 18 }

 $(SS \text{ is serial}) \land (SS.optGraph \text{ is cyclic})$

 \Rightarrow { contrapositive of Lemma 21 }

 $(SS \text{ is serial}) \land (SS \text{ is not serial})$

Here we have a contradiction. Hence S.optGraph is acyclic.

Next we show that for a given schedule S, if the serialization graph is acyclic then S is in CP-CNO. We give an algorithm for generating conflict preserving serial schedule from S.optGraph if it is acyclic. We call this *expander algorithm*. The expander algorithm separates the disjoint sub-graphs of S.optGraph. For a transaction t_X , a subgraph denoted as g_X is constructed by taking all the nodes corresponding to t_X 's children nodes and the edges between them. To construct the final schedule the expander algorithm works with *xschedules*. A xschedule is like a normal schedule but also has transaction operations in its event set. Similar to a schedule all the events in a xschedule are totally ordered. When a xschedule has no transaction operations in it, then it is same as a normal schedule. For a transaction t_X , a subgraph denoted as $g_X = t_X.subGraph(S)$ is constructed as follows:

Initialize a xschedule XS to t_0

1 Parse the xschedule XS. Perform the following actions when each of the following is encountered:

1.1 Transaction t_N : Replace this transaction with all its child operations, followed by t_N 's commitwrite set and t_N 's terminal operation. The order of t_N 's children is given by a topological sort obtained from the graph $g_N = t_N.subGraph(S)$.

- 1.2 Memory and Terminal operations: Nothing needs to be done.
- 2 Repeat the above step until the serial schedule XS contains only memory and terminal operations.

When the expander algorithm starts, the xschedule XS has only one transaction t_0 in it. Then expander algorithm recursively replaces any transaction operation in XS with its children, its commit-write operations and its terminal operation until XS has no more transactions in it. We denote the various changes in the xschedule by subscripting XS. The expander algorithm starts with XS_0 , working through XS_1 , XS_2 and so on until it reaches the final schedule XS_f . We denote the final schedule XS_f as RS (resultant schedule).

The topological sorts of the various subgraphs obtained by applying this algorithm on S3.optGraph of Example 4:

 $\begin{array}{l} g_0:t_{01}t_{03}t_{02}\\ g_{01}:t_{011}t_{012}\\ g_{02}:t_{022}t_{023}t_{021}t_{024}\\ g_{021}:t_{0211}t_{0212}t_{0213}\\ g_{023}:t_{0231}t_{0232}\\ g_{0231}:t_{02311}t_{02312}\\ g_{0232}:t_{02321}t_{02322}t_{02323}\\ g_{024}:t_{0241}t_{0242}t_{0243}\\ g_{03}:t_{031}t_{032}t_{033} \end{array}$

The resultant schedule is:

 $S6: r_{011}(x)w_{012}(y)w_{01}^{012}(y)c_{01}r_{031}(y)r_{032}(z)w_{033}(d)w_{03}^{033}(d)c_{03}w_{022}(x)r_{02311}(x)w_{02312}(y)w_{0231}^{02312}(y)c_{0231}(y)w_{02312}(y)w_{0232}^{02312}(x)w_{0232}^{02322}(x)w_{0232}^{02323}(y)c_{0232}a_{023}r_{0211}(z)w_{0212}(x)w_{0213}(y)w_{021}^{0212}(x)w_{021}^{0213}(y)c_{021}(x)w_{021}(x$

Now we will prove if S.optGraph is acyclic then the resultant schedule RS obtained is serial and optConf equivalent to the original schedule S.

Lemma 24 Consider a XS_i that has two nodes n_P, n_Q such that n_P occurs before n_Q . Then in $XS_f(RS)$, the last event of n_P , $XS_f.n_P.last$ occurs before the first event of n_Q , $XS_f.n_Q.first$. Formally, $\langle (\{n_P, n_Q\} \subseteq XS_i.evts : XS_i.ord(n_P) < XS_i(n_Q)) \Rightarrow (XS_f.ord(XS_f.n_P.last) < XS_f.ord(XS_f.n_Q.first)) \rangle$

Proof: This is can be easily proved using induction on the distance between n_P , n_Q in XS_i : $\delta = |XS_i.ord(n_P) - XS_i.ord(n_Q)|$.

One can see the following property about RS.

Property 25 Consider a schedule S such that S.optGraph is acyclic. Then the resultant schedule RS satisfies validity of transaction limits i.e. after a transaction terminates no operation (memory or terminal) belonging to it should execute

In the next lemma we describe the relationship between edges in a graph of S.optGraph and the resultant schedule RS.

Lemma 26 Consider a schedule S with the graph S.optGraph being acyclic. Let there be two vertices in v_P, v_Q in it corresponding to tree nodes n_P, n_Q . If there is an edge from v_P to v_Q then in RS the last event of n_P occurs before the first event of n_Q . Formally,

 $\langle v_P, v_Q \subseteq S.optGraph.v, e_i \in S.optGraph.e : (e_i \ connects \ v_P \ to \ v_Q) \Rightarrow (RS.ord(RS.n_P.last) < RS.ord(RS.n_Q.first)) \rangle$

Proof: From our construction of S.optGraph, we get that n_P, n_Q are peers. Let these nodes be children of a transaction t_N in the computation tree. Let the subgraph corresponding to t_N be $g_N = t_N.subGraph(S)$. When the expander algorithm encounters t_N in some xschedule XS_j and parses, it replaces t_N by all its children, followed by t_N 's commit-write set and t_N 's terminal operation. The ordering among the child nodes is given by topological sort of g_N .

Since there is an edge from v_P to v_Q in S.optGraph, the expander algorithm ensures that v_P occurs before v_Q in the topological sort of g_N . Hence in $XS_{(j+1)}$, the expander algorithm places n_P before n_Q . Combining this result with Lemma 24, we get that in RS the last event of n_P occurs before the first event of n_Q .

Next we show that RS satisfies each of the conditions mentioned in the definition of CP-CNO.

Property 27 If S.optGraph is acyclic then RS contains the same events as S. Formally, $\langle (S.optGraph \ is \ acyclic) \Rightarrow (S.evts = RS.evts) \rangle$

This property directly follows from the observation that the expander algorithm does not alter the computation tree. It only alters the schedule of the memory operations.

Property 28 If S.optGraph is acyclic then RS is serial.

This property follows directly from the working of expander algorithm.

Lemma 29 Consider a schedule S such that S.optGraph is acyclic. Let t_X be a transaction in S with children n_P and n_Q . If n_P occurs before n_Q in S then n_P also occurs before n_Q in RS. Formally, $\langle S : t_X \in S.nodes, \{n_P, n_Q\} \subseteq S.children(t_X) : ((S.optGraph is acyclic) \land (n_P <_S n_Q)) \Rightarrow (n_P <_{RS} n_Q) \rangle$

Proof: From the construction of g = S.optGraph we can see that it contains two vertices v_P (corresponding to n_P) and v_Q (corresponding to n_Q). If $(n_P <_S n_Q)$ then in g there is an edge from v_p (the vertex corresponding to n_P) to v_q (the vertex corresponding to n_Q). Now combining this with Lemma 26 we get that $(RS.ord(RS.n_P.last) < RS.ord(RS.n_Q.first))$ which implies that $(n_P <_{RS} n_Q)$.

Lemma 30 Consider a schedule S with two memory operations m_X, m_Y such that $S.optConf(m_X, m_Y)$ is true. If S.optGraph is acyclic then in RS, m_X occurs before m_Y . Formally, $(S.optGraph is acyclic) \land S.optConf(m_X, m_Y) \Rightarrow (RS.ord(m_X) < RS.ord(m_Y))$

Proof: From the definition of optConf, we get that there exist two peer nodes n_P , n_Q such that m_X is in n_P 's dSet and m_Y is in n_Q 's dSet. From the construction of g = S.optGraph we can see that it contains two vertices v_P (corresponding to n_P) and v_Q (corresponding to n_Q) and there is an edge between v_P and v_Q . Now the argument is similar to the proof of Lemma 29. Due to the presence of an edge, from Lemma 26 we get that $(RS.ord(RS.n_P.last) < RS.ord(RS.n_Q.first))$. Hence, m_X occurs before m_Y in RS. \Box

Lemma 31 Consider a schedule S such that S.optGraph is acyclic. Then the lastWrite for every read operation in S is the same as in RS. Formally, $\langle S.optGraph \Rightarrow (\forall r_X \in S.evts : (S.lastWrite(r_X) = RS.lastWrite(r_X)) \rangle$

Proof: The proof is very similar to Theorem 17.

Lemma 32 Consider a schedule S with two memory operations m_X, m_Y such that S.optConf (m_X, m_Y) is true. If S.optGraph is acyclic then $RS.optConf(m_X, m_Y)$ is true as well. Formally, $\langle (S.optGraph \ is \ acyclic) \land S.optConf(m_X, m_Y) \Rightarrow RS.optConf(m_X, m_Y) \rangle$

Proof: From Property 27, we get that all the events in RS is same as S. Thus their computation trees are the same. Further from Lemma 31, we get that all the lastWrites for every read are same in S and RS. Now let us consider each case of conflict:

- $m_X = w_X, m_Y = r_Y$: This case implies that there exist two peer nodes n_P, n_Q such that w_X is n_P 's commit-write and r_Y is n_Q 's external-read in S. Since the computation trees of S and RS are the same and the lastWrites for every read are the same we have that w_X is n_P 's commit-write and r_Y is n_Q 's external-read in RS as well. From Lemma 30, we get that w_X occurs before r_Y in RS. These are the conditions for w_X and r_Y to be in optConf in RS. Hence, w_X, r_Y are in optConf in RS as well.
- $m_X = r_X$, $m_Y = w_Y$: The argument is the same as above.
- $m_X = w_X, m_Y = w_Y$: Here, w_X and w_Y are peers in S. Since the computation trees of S and RS are the same, w_X and w_Y are peers in RS as well. From Lemma 30, we get that w_X occurs before w_Y in RS. Hence, w_X, w_Y are in optConf in RS as well.

Thus, in all the cases we get that $RS.optConf(m_X, m_Y)$ is true.

Finally we have,

Theorem 33 $(S \in CP\text{-}CNO) \Leftrightarrow (S.optGraph is acyclic)$

Proof: We will prove each direction.

- (\Rightarrow) $(S \in CP-CNO) \Rightarrow (S.optGraph is acyclic):$ Here we have that $(S \in \text{CP-CNO}) \xrightarrow[definition]{CP-CNO} ((S \approx_{oc} SS) \land (SS \text{ is serial})) \xrightarrow[definition]{Lemma 23} (S.optGraph)$ is acyclic)
- (\Leftarrow) (S.optGraph is acyclic) \Rightarrow (S \in CP-CNO):

Since S.optGraph is acyclic, the expander algorithm generates a schedule RS. From Property 28 we get that RS is serial. Now we will prove each of the conditions required by the definition of CP-CNO.

- Event Equivalence: From Property 27 we get that, $((S.evts = RS.evts) \land (S.nodes = SS.nodes)).$

- schedule-partial-order Equivalence: From Lemma 29, we get that, $\langle S: t_X \in S.nodes, \{n_P, n_Q\} \subseteq S.children(t_X): (n_P <_S n_Q) \Rightarrow (n_P <_{RS} n_Q) \rangle$
- optConf Implication: From Lemma 32, we get that, $\langle S : (\{m_X, m_Y\} \subseteq S.evts) : (S.optConf(m_X, m_Y)) \land (S.optGraph \text{ is acyclic}) \Rightarrow (RS.optConf(m_X, m_Y)) \rangle.$

This proves all the requirements for CP-CNO.

4 Extensions to Closed Nested Opacity

In the previous section we developed a polynomial time verifiable characterization of CNO. In this section we will develop some extensions to CNO.

4.1 Drawback of CNO

Given a schedule with aborted transactions, opacity specifies that the read operations of aborted transactions also read consistent values. To ensure that no transaction reads from an aborted transaction, aborted transactions are treated as read-only transactions. A given schedule is said to be opaque if there exists a serial schedule equivalent to it. In this way the current specification of opacity ensures that the reads of all transactions (including aborted transactions) are consistent and the writes of aborted transactions are hidden from other transactions. Class CNO is an extension to opacity which treats aborted transactions in the same manner.

Now consider the following transactions,

Transaction 3 t_{01}			
1: read y			
2: write y			
3: write z			
Transaction 4 t_{02}			
1: read d			
2: invoke t_{022}			
3: invoke t_{023}			

Transaction	5	t_{022}	

- 1: read y
- 2: read z
- 3: write d

Figure 8: The tree for Example 6

Transaction 6 t_{023}	
1: read p	
2: read z	
3: write z	

For this example, let the transactions t_{01}, t_{02} execute in an interleaved manner. Let the following schedule represent the execution of these transactions. In this schedule all the transactions execute to completion and commit.

Example 6 $t_0: \{t_{init}, t_{01}, t_{02}, t_{fin}\},\$ $t_{01}: \{ sm_{011} = r_{011}(y), sm_{012} = w_{012}(y), sm_{013} = w_{013}(z) \},\$ $t_{02}: \{sm_{021} = r_{021}(d), t_{022}, t_{023}\},\$ $t_{022}: \{sm_{0221} = r_{0221}(y), sm_{0222} = r_{0222}(z), sm_{0223} = w_{0223}(d)\},\$ $t_{023}: \{sm_{0231} = r_{0231}(p), sm_{0232} = r_{0232}(z), sm_{0233} = w_{0233}(z)\},\$

Schedule:

 $S7: r_{011}(y)r_{021}(d)w_{012}(y)r_{0221}(y)w_{013}(z)w_{01}^{012}(y)w_{01}^{013}(z)c_{01}r_{0222}(z)w_{0223}(d)w_{022}^{0223}(d)c_{022}r_{0231}(p)r_{0232}(z)w_{0233}(z)w_{023}^{0232}(z)c_{023}w_{022}^{023}(z)c_{02}$

Consider a scheduler H based on the class CP-CNO (and hence the class CNO) which schedules the events. The scheduler is invoked on-demand basis. When a transaction wishes to perform a read operation or wishes to commit, it invokes the scheduler. On being invoked, the scheduler looks at the current operation

(either read or commit operation) with the history of events already executed. Using all these events it constructs a serialization graph based on optConf and checks for acyclicity. If the graph is acyclic, then the scheduler allows the current operation to execute. Otherwise it does not allow the operation to execute and aborts the corresponding transaction.

In the given schedule, the scheduler allows all the events till the transaction t_{01} commits. None of these events form a conflict cycle. Thus the schedule of the events are:

 $r_{011}(y)r_{021}(d)w_{012}(y)r_{0221}(y)w_{013}(z)w_{01}^{012}(y)w_{01}^{013}(z)c_{01}$

Then, let the next event to be executed be $r_{0222}(z)$ belonging to t_{022} . Given this sequence, the scheduler will abort transaction t_{021} before it executes this step. In between the reads of the variables y and z by the transaction t_{022} , the transaction t_{01} updates these variables. Thus a conflict cycle is formed between the transactions t_{01} and t_{02} in the serialization graph and hence this schedule is not in CP-CNO. As a result the scheduler will abort the transaction t_{022} . Further it can be verified that this schedule is not in the class CNO as well.

Next the events of the transaction t_{023} execute as shown in the schedule. The read operation $r_{0231}(p)$ is allowed by the scheduler. The next event to execute is a read operation $r_{0232}(z)$. But the scheduler H will not allow this event to execute as it causes a conflict cycle. It can be seen that the read operation $r_{0221}(y)$ by the transaction t_{022} is performed before the transaction t_{01} commits. But the read $r_{0232}(z)$ is performed after t_{01} commits and the lastWrite of $r_{0232}(z)$ is $w_{01}^{012}(z)$. Due to these operations, a cycle is formed in the serialization graph between the nodes t_{01} and t_{02} . Even though the transaction t_{022} has been aborted, its read operation still causes t_{023} to abort. Thus, this schedule of events is not in CP-CNO. Similar to above discussion, it can be verified that this schedule is also not in CNO. For this schedule to be accepted by the scheduler, no sub-transaction of t_{02} starting after t_{022} has aborted can read any of the data-items written by t_{01} . Thus, in the worst case an aborted sub-transaction can cause its top-level transaction itself to abort.

This shows that with CNO, an aborted sub-transaction can severely restrict the concurrency of nested transactions. An aborted transaction affects the transactions that follow it. But ideally we would want an aborted transaction to have no affect on the transactions that follow it. To address this shortcoming, we formulate a new correctness criterion called *Abort-Shielded Consistency* or *ASC*. This criterion is based on the notion of sub-schedules. Now we will describe a few notations which we will later use to describe the correctness criterion.

4.2 Notations

For a transaction t_X in S we denote the terminal operations of all the sub-transactions in t_X 's dSet by terminal operation or $S.termOp(t_X)$. We denote $S.schOps(t_X)$ as the set of operations in $S.dSet(t_X)$ which are also present in S.evts along with the set of terminal operations. Formally, $S.schOps(t_X) = (S.dSet(t_X) \cap S.evts) \cup S.termOp(t_X)$.

We define two functions for a commit-write operation. If w_X is a commit-write operation in S, then $S.orgWrite(w_X(d))$ denotes the original simple-write of $w_X(d)$. Let the holder of the commit-write w_X be n_X . Then function $S.baseWrite(w_X(d))$ denotes the corresponding commit-write or simple-write on d in the child transaction of n_X . For example in S7 of Example 6, for the commit-write $w_{022}^{022}(d)$, the baseWrite is $w_{0223}^{0223}(d)$ and the orgWrite is $w_{0223}(d)$. For the commit-write $w_{0223}^{0223}(d)$, the baseWrite and orgWrite are $w_{0223}(d)$. Thus the orgWrite is always a simple-write whereas the baseWrite can be either a commit-write or a simple-write.

We define a few notations based on aborted transactions in a schedule. Consider a schedule S, with a transaction t_X . We denote $S.abort(t_X)$ as the set of all aborted transactions in t_X 's dSet. If t_X is an aborted transaction then $S.abort(t_X)$ contains t_X as well. For t_X , we define $S.prune(t_X)$ as all the events in the

schOps of t_X after removing the events from all the aborted transactions in t_X 's dSet. Formally, $S.prune(t_X) = \{S.schOps(t_X) - (\bigcup_{\substack{t_A \in S.abort(t_X)}} S.schOps(t_A))\}$

Intuitively this function denotes the schOps remaining in t_X after pruning all the aborted transactions from it. If t_X has no aborted transaction in its dSet then $S.prune(t_X)$ is same as $S.schOps(t_X)$. If t_X is an aborted transaction then $S.prune(t_X)$ is nil. To capture all the pruned descendants of an aborted transaction we define chrnPruned (children-pruned) function. For a transaction t_X (either committed or aborted), $S.chrnPruned(t_X) = \{ \bigcup_{\substack{t_Y \in S.children(t_X)}} S.prune(t_Y) \cup S.cwrite(t_X) \}$

It must be noted that for a committed transaction t_X , $S.prune(t_X)$ is same as $S.chrnPruned(t_X)$. Also for a schedule, $S.prune(t_0)$ denotes the schedule events with only the committed transactions and no aborted transaction.

For a node n_P , its *anscTermSet* denoted as $S.anscTermSet(n_P)$ is the set of terminal operations of all its ancestors in the schedule. We denote a node as a *committed node* if it is either a committed transaction or a simple-memory operation.

4.3 Sub-Schedules

Now we will formally define the notion of sub-schedules. Given a well-formed schedule S a sub-schedule subS should satisfy:

- $subS.evts \subseteq S.evts$
- $subS.ord \subseteq S.ord$

Consider an event e_i in a schedule S. If the event is a memory operation m_X then let its holder be n_X . The node n_X has well defined parent and set of ancestors. If e_i is a terminal operation, say f_Y , in S belonging to transaction t_Y . Then similar to n_X , t_Y has a well defined parent and set of ancestors. Thus an event e_i in a schedule S corresponds to a valid sub-tree of the computation tree. Extending this idea, a subset of events of a schedule form a valid sub-tree of the original computation tree and not a collection of forests.

Consider a sub-schedule subS of a schedule S. Since the events in subS could be a random subset of events of a S, it may not signify anything. For subS to be meaningful it must be well-formed. The conditions of well-formedness defined in SubSection2.3 for schedules also apply to sub-schedules. The set of events of the sub-schedule is a subset of the events in S, a well-formed schedule. Since the order of events in the sub-schedule subS is same as the order of the events in the S, after a transaction terminates no operation belonging to it executes. This is the condition (1), validity of transaction limits, of the well-formedness requirement.

A read operation in a sub-schedule is valid if it reads its lastWrite value of S which is condition (2) of well-formedness. Thus for any read operation in a sub-schedule, its lastWrite in S should also be in *subS*. In addition to this, for any memory operation m_X in *subS*, all the memory operations that *affect* m_X in S should also be in *subS*. This requirement is called *causality* of events. We say that *subS* is *causally complete* w.r.t m_X if it contains all the events that affect m_X in S. Now we define a few functions to formally define the affects relationship. First, we define a function *isUseful* between two memory operations. This function defines when one memory operation is useful to another memory operation. It is similar to *immediately-useful-to* relation of [17]. For two memory operations m_Y, m_X in S, it is denoted as $S.isUseful(m_Y, m_X)$:

1. $m_Y = w_Y, m_X = r_X$: w_Y is the lastWrite of r_X then $S.isUseful(w_Y, r_X)$ is true

- 2. $m_Y = r_Y, m_X = w_X$, where w_X is a simple-write: If there exists a node n_P such that n_P is optVis to w_X , n_Q is a peer of n_P with w_X is in n_Q 's dSet, n_P occurred before n_Q in S, r_Y is in the pruned set of n_P and r_Y is an external-read of n_P then $S.isUseful(r_Y, w_X)$ is true. Formally, $\langle \exists n_P, \exists n_Q : (n_P, n_Q \text{ are peers}) \land (n_P <_S n_Q) \land (r_Y \in S.prune(n_P)) \land (S.lastWrite(r_Y) \notin S.dSet(n_P)) \land (w_X \in S.dSet(n_Q)) \Rightarrow S.isUseful(r_X, w_Y) \rangle$
- 3. $m_Y = r_Y, m_X = w_X$, where w_X is a commit-write: Let $S.orgWrite(w_X)$ be w_Z , the corresponding simple write. Then $S.isUseful(r_Y, w_X)$ is true when $S.isUseful(r_Y, w_Z)$ is true

A read operation's lastWrite affects the read operation. Hence it is useful to the read operation. Now consider a simple-write operation, w_X , and a read operation r_Y . If the read is its peer and occurs before it in the schedule then r_Y affects w_X . Consider another scenario. Let n_P and n_Q be two peer nodes such that n_P occurs before n_Q in S. Let w_X be in n_Q 's dSet. Hence n_P is optVis to w_X . If r_Y is in the pruned set of n_P and is an external-read of n_P then it affects w_X . The same idea can be extended to w_X if it is a commit-write. Hence r_Y is useful to w_X . Thus, from the definition of isUseful we get that if m_Y is useful to m_X , then m_Y occurs before m_X in S.

In the schedule S7, S7.*isUseful*($w_{01}^{013}(z)$, $r_{0232}(z)$) is true, since $w_{01}^{013}(z)$ is the lastWrite of $r_{0232}(z)$. Then S7.*isUseful*($r_{011}(y)$, $w_{013}(z)$) and S7.*isUseful*($r_{011}(y)$, $w_{01}^{013}(z)$) are true since $r_{011} <_{S7} w_{013}$, w_{013} is the simple-write for w_{01}^{013} and $r_{011}(d)$ being a simple-memory operation is an external-read of itself.

Based on isUseful function, for a given memory operation m_X in S, we define the set *usefulMemOps* which consists of all memory operations that are useful to m_X ,

 $S.usefulMemOps(m_X) = \{m_Y | S.isUseful(m_Y, m_X)\}$

Next based on the notion of usefulMemOps, we identify a set of nodes that are useful to a memory operation m_X in S. It consists of all the nodes that are optVis to m_X and have at least one memory operation in their pruned sets which is useful to m_X . We call this set as *usefulNodes*. Formally,

 $S.usefulNodes(m_X) = \{n_Y | S.optVis(n_Y, m_X) \land (S.prune(n_Y) \cap S.usefulMemOps(m_X) \neq nil)\}$ It can be verified that any node in the usefulNodes set of a memory operation m_X terminates before m_X in the schedule.

Next we define a function *transUsefulNodes* that computes all nodes that are directly and transitively useful to a memory operation m_X . This is recursively defined and uses usefulNodes as the base case.

$$S.transUsefulNodes(m_X) = (S.usefulNodes(m_X)) \cup \\ (\bigcup_{n_Y \in S.usefulNodes(m_X) \land m_Y \in S.prune(n_Y)} S.transUsefulNodes(m_Y))$$

Thus any node that is useful to a memory operation is also transitively useful to it. It must also be noted that if a transaction is aborted, then it cannot be useful or transitively useful to any memory operation. Thus we have the lemma,

Lemma 34 If a node n_Z is useful to some memory operation m_X in S, then the node n_Z is a committed node. Formally,

$$\langle n_Z \in S.transUsefulNodes(m_X) \Rightarrow n_Z \text{ is a committed node } \rangle$$

Proof: This can be proved using induction over the schDist of the last event of n_Z from m_X . The base case of the induction is when n_Z is in the usefulNodes set of m_X .

The notion committed node is defined in SubSection4.2. Similar to usefulNodes, it can be proved that all the nodes in the set transUsefulNodes terminate before n_X in S.

Using the set transUsefulNodes we will construct the set usefulSchEvts for a memory operation m_X . It consists of all the pruned operations from all the nodes m_Y that are transitively useful to n_X . Formally, $S.usefulSchEvts(m_X) = \{(\bigcup_{\substack{n_Y \in S.transUsefulNodes(m_X)}} S.prune(n_Y))\}$

Using usefulSchEvts we can formally define affects relationship. A memory operation m_Y affects another memory operation m_X if m_Y is in the usefulSchEvts set of m_Y . Formally,

$$S.affects(m_Y, m_X) = \begin{cases} true & (m_Y \in S.usefulSchEvts(m_X)) \\ false & otherwise \end{cases}$$

Having formally defined the affects function, we state the requirements for the well-formedness of any sub-schedule:

1. Causality Completeness: For any memory operation m_X present in a sub-schedule subS of a schedule S, the sub-schedule should also contain all the memory operations that affect m_X . Formally, $\langle m_X \in subS.evts \Rightarrow S.usefulSchEvts(m_X) \in subS.evts \rangle$

Consider a sub-schedule subS of a schedule S that is causally complete. With this definition of causality completeness, we get that if a commit-write operation w_X is in subS then the baseWrite of w_X , $S.baseWrite(w_X)$ is also in subS. If w_X 's baseWrite is another commit-write then its baseWrite is also in subS. Following the baseWrites recursively which terminates in w_X 's orgWrite, we get that it is also included in subS.

Having described the usefulSchEvts w.r.t a memory operation, we next extend this notion to transactions as well (and nodes). Consider a node n_X in a schedule. For this node we define usefulSchEvts as the union of usefulSchEvts of all the memory operations in the pruned set of n_X . Formally,

 $S.usefulSchEvts(n_X) = \{ (\bigcup_{m_Y \in S.chrnPruned(n_X)} S.usefulSchEvts(m_Y)) \}$

In addition to causality, we also require that for every transaction present in a sub-schedule, its terminal operation is also present in it. This clearly indicates when a transaction completes.

2. Transaction termination: Consider a sub-schedule subS of a schedule S. If the subS contains events from a transaction t_X then it also contains the terminal operation of t_X in its set of events. Formally, $\langle t_X \in subS.evts \Rightarrow S.termOp(t_X) \in subS.evts \rangle$

It must be noted that by this characterization a transaction in a well-formed sub-schedule can have its commit operation but none of its commit-write operations in the sub-schedule. The sub-schedule still satisfies all the requirements of well-formedness. From causality completeness, we get the following lemma on sub-schedules.

Lemma 35 Consider a schedule S in CNO. Let subS be a sub-schedule of S that is causally complete. Then, there exists a serial sub-schedule ssubS that:

- 1. Sub-Schedule Event Equivalence: The events of subS and ssubS are the same.
- 2. schedule-partial-order Equivalence: For any two nodes n_Y, n_Z that are peers in the computation tree represented by subS if n_Y occurs before n_Z in subS then n_Y occurs before n_Z in subS as well.

3. lastWrite Equivalence: For all read operations the lastWrites in subS and ssubS are the same.

Proof: These properties follow directly from the definition of CNO. Since S is in CNO, we get that there exists a serial schedule SS which has the same set of events as S. Removing all the events from the serial schedule that are not in subS, we get that the resulting sub-schedule, denoted as subSS, has the same set of events as subS and is serial. Further it can be seen that schedule-partial-order in subS is same as subSS. This proves the conditions 1 and 2 above.

It must be noted that since S is in CNO, the lastWrites for every read in S and SS are the same. Since subS is causally complete the lastWrite for every read operation of subS is also in subS. Similarly the lastWrite for every read operation of subSS is also in subSS, we get that the lastWrite of every read in subSS is same as in subS. This proves the condition 3 above. Hence, the lemma follows.

4.4 Abort Shielded Consistency

In SubSection4.1 we observed how an aborted transaction can affect the transactions following it. But ideally we want an aborted transaction to have no effect on the transactions that follow it. By looking for a single serial schedule involving all transactions, opacity limits concurrency. In this section, we present a class of schedules *Abort-Shielded Consistency* or *ASC*, which define a correctness criterion in which an aborted transaction does not affect the transactions that follow it. Then we present *Conflict Preserving Abort-Shielded Consistency* or *CP-ASC*, a subset of ASC based on optConf. The membership of CP-ASC can tested in polynomial time. Using CP-ASC, we give the design of a scheduler CP-ASC-Sched for scheduling interleaving nested transactions.

We consider the following schedule S9 for illustrating this class.

Example 7 $t_0: \{t_{init}, t_{01}, t_{02}, t_{03}, t_{fin}\},\$ $t_{01}: \{sm_{011} = r_{011}(x), sm_{012} = w_{012}(y), sm_{013} = w_{013}(z), c_{01}\},\$ $t_{02}: \{sm_{021} = r_{021}(b), sm_{022} = r_{022}(z), sm_{023} = w_{023}(d), c_{02}\},\$ $t_{03}: \{t_{031}, t_{032}, t_{033}, c_{03}\},\$ $t_{031}: \{sm_{0311} = r_{0311}(y), sm_{0312} = w_{0312}(b), a_{031}\},\$ $t_{032}: \{sm_{0321} = r_{0321}(d), sm_{0322} = r_{0322}(z), a_{032}\},\$ $t_{033}: \{sm_{0331} = r_{0331}(y), sm_{0332} = r_{0332}(d), sm_{0333} = w_{0333}(x), c_{033}\},\$

Schedule:

 $S9: r_{011}(x)r_{0311}(y)w_{012}(y)r_{021}(b)w_{013}(z)w_{01}^{012}(y)w_{01}^{013}(z)c_{01}r_{022}(z)w_{0312}(b)a_{031}r_{0321}(d)w_{023}(d)w_{02}^{023}(d)w_{02}^{023}(d)w_{033}(z)c_{033}w_{033}^{033}(x)c_{033}w_{033}^{033}(x)c_{03}$

In this schedule, $r_{0311}(y)$ reads from t_{init} , whereas $w_{01}^{012}(y)$ of t_{01} writes in y. But $r_{0322}(z)$ reads from $w_{01}^{013}(z)$ of t_{01} . Thus between two external-reads of t_{03} , we have t_{01} 's updates. Hence there is no serial schedule equivalent to it. As a result it is not in CNO. The optConf serialization graph for this schedule is shown in Figure 10 which shows that S9 is not in CP-CNO.

Consider a schedule S with an aborted transaction t_A . If the aborted transaction should not affect the transactions following it, then t_A should be dropped from the schedule while considering the correctness of the remaining transactions. Generalizing this idea to all aborted transactions, we construct a sub-schedule which consists of events only from committed transactions (sub-transactions) and no event from any aborted

Figure 9: Computation tree for Example 7

Figure 10: The graph shows the CP-CNO conflict graph for S9

transaction. It does not contain events from committed transactions that are sub-transactions of aborted transactions as well. Thus, the sub-schedule consists of all the events from $S.prune(t_0)$. For simplicity we will denote this sub-schedule as $commitSubSch_0$. Then we check for the correctness of $commitSubSch_0$. This idea is similar to verifying the consistency of committed transactions in virtual worlds consistency [8].

As explained in [5], it is necessary that each aborted transaction t_A also reads consistent values. To ensure this, we construct a sub-schedule of S denoted as $pprefSubSch_A$ (pruned prefix sub-schedule) for t_A . For this, we consider the prefix of all the events until t_A 's abort operation. From this prefix we construct the sub-schedule by removing (1) events from transactions that aborted earlier and (2) events of any aborted sub-transaction of t_A . Thus, the sub-schedule consists of events from transactions that committed before t_A and events from live transactions, i.e., transactions that have not yet terminated when t_A is aborted. The ordering among the events is same as in the original schedule S.

Finally, for each live transaction which includes the ancestors of t_A , we add a commit operation after t_A 's abort operation to the sub-schedule. But we do not add the commit-writes for these transactions. The ordering among the commit operations is such that an ancestor's commit operation is added only after all its children's commit operations (which are also ancestors of t_A) have been added. This ensures that well-formedness of the sub-schedule is maintained. By adding the commit operations, we ensure that all the transactions in the sub-schedule have a terminal operation. Then we look for the correctness of this sub-schedule. In S9, for the aborted transaction t_{031} , $pprefSubSch_{031}$ is:

 $r_{011}(x)r_{0311}(y)w_{012}(y)r_{021}(b)w_{013}(z)w_{01}^{012}(y)w_{01}^{013}(z)c_{01}r_{022}(z)w_{0312}(b)a_{031}c_{02}c_{03}.$ Similarly the sub-schedules for every aborted transaction can be constructed.

The set of pprefSubSchs for the schedule S9 are,

 $\begin{aligned} commitSubSch_{0} &= r_{011}(x)w_{012}(y)r_{021}(b)w_{013}(z)w_{01}^{012}(y)w_{01}^{013}(z)c_{01}r_{022}(z)w_{023}(d)w_{02}^{023}(d)c_{02}r_{0331}(y)\\ r_{0332}(d)w_{0333}(x)w_{033}^{0333}(x)c_{033}w_{03}^{033}(x)c_{03}\\ pprefSubSch_{031} &= r_{011}(x)r_{0311}(y)w_{012}(y)r_{021}(b)w_{013}(z)w_{01}^{012}(y)w_{01}^{013}(z)c_{01}r_{022}(z)w_{0312}(b)a_{031}c_{02}c_{03}\\ pprefSubSch_{032} &= r_{011}(x)w_{012}(y)r_{021}(b)w_{013}(z)w_{01}^{012}(y)w_{01}^{013}(z)c_{01}r_{022}(z)r_{0321}(d)w_{023}(d)w_{02}^{023}(d)c_{02}\\ r_{0322}(z)a_{032}c_{03}\end{aligned}$

From the definition of pprefSubSch we can prove that pprefSubSchs are causally complete stated in the following lemma,

Lemma 36 For every aborted transaction t_A in S, the sub-schedule $pprefSubSch_A$ is causally complete.

Proof: This follows from the construction of pprefSubSch. The sub-schedule $pprefSubSch_A$ contains events either from transactions that committed before t_A or transactions that have not yet terminated. Thus, all the events that affects t_A are in $pprefSubSch_A$. Hence it is causally complete.

For a schedule S, we define a set of well-formed sub-schedules denoted as subSchSet. It consists of the following sub-schedules:

- 1. The sub-schedule $commitSubSch_0$ is in subSchSet. Formally, $(commitSubSch_0 \in subSchSet)$
- 2. For every aborted transaction t_A in S, there exists a pprefSubSch, $pprefSubSch_A$ in subSchSet, $\langle \forall t_A : pprefSubSch_A \in subSchSet \rangle$

Using subSchSet, we define a class of schedules, Abort-Shielded Consistency or ASC as:

Definition 6 A schedule S belongs to ASC class if for every sub-schedule subS in the set subSchSet of S, there exists a serial sub-schedule ssubS such that:

- 1. Sub-Schedule Event Equivalence: The events of subS and ssubS are the same. Formally, $\langle subS.evts = ssubS.evts \rangle$
- schedule-partial-order Equivalence: For any two nodes n_Y, n_Z that are peers in the computation tree represented by subS if n_Y occurs before n_Z in subS then n_Y occurs before n_Z in subS as well. Formally,

 $\langle t_X : \{n_Y, n_Z\} \subseteq subS.children(t_X) : (n_Y <_{subS} n_Z) \Rightarrow (n_Y <_{ssubS} n_Z) \rangle$

3. lastWrite Equivalence: For all read operations the lastWrites in subS and ssubS are the same. Formally,

 $\langle \forall r_X \in subS : subS.lastWrite(r_X) = ssubS.lastWrite(r_X) \rangle$

Similarly using pprefSubSch we define an extension to CP-CNO, *Conflict Preserving Abort Shielded Consistency* or *CP-ASC*. It differs from the definition of the class ASC only in the case 3 as:

3. optConf Implication: If two memory operations in *subS* are in optConf then they are also in optConf in *ssubS*. Formally,

$$\langle \forall m_Y, \forall m_Z : \{m_Y, m_Z\} \subseteq subS.evts : (subS.optConf(m_Y, m_Z) \Rightarrow ssubS.optConf(m_Y, m_Z)) \rangle$$

For this class, we get the following lemmas

Lemma 37 If a schedule S is in CNO then it is also in ASC. Formally $\langle CNO \subset ASC \rangle$

Proof: Consider a schedule S in CNO. Then, from the definition of CNO we get that there exists a serial schedule SS such that the lastWrites of S and SS are the same. Thus for any sub-schedule subS of S that is causally complete, there exists a serial sub-schedule subS that is serial and has the same lastWrites of subS, by Lemma 35.

To prove that S is also in ASC, we have to prove that,

- For *commitSubSch*₀, there exists a serial sub-schedule, namely *commitSerSubSchSS*₀: It must be noted that *commitSubSch*₀ is a sub-schedule of *S* and is causally complete. Since *S* is in CNO, from Lemma 35 we get that there exists a serial sub-schedule *commitSerSubSchSS*₀.
- The sub-schedule $pprefSubSch_A$ for every aborted transaction, t_A has an equivalent serial subschedule: From Lemma 36 we get that the sub-schedule $pprefSubSch_A$ is causally complete. Hence the reasoning for this case is same as the above case.

This completes the proof.

It can be verified that schedule S9 is in ASC but not in CNO. Hence, the class CNO is a strict subset of ASC.

Lemma 38 If a schedule S is in CP-ASC then it is also in ASC. Formally $\langle CP-ASC \subset ASC \rangle$

Figure 11: The serialization graphs for the schedule in Example 7. This shows that this schedule is in CP-ASC

Proof: The proof is similar to Theorem 17.

It can be seen that verifying whether S is in CP-ASC or not can be done in polynomial time. From the schedule S, the sub-schedules $commitSubSch_0$ and $pprefSubSch_A$ for every aborted transaction t_A are constructed. Then for each sub-schedule, the serialization graph is constructed using optGraphCons algorithm based on optConf. If all the graphs constructed are acyclic, then the schedule S is in CP-ASC. The equivalent serial sub-schedules for the sub-schedules is constructed from the graphs using the expander algorithm.

For the schedule S9 of Example 7, the set of serial pprefSerSubSchs are as follows where $commitSerSubSchSS_0$ is the serial sub-schedule corresponding to $commitSubSch_0$, $commitSerSubSchSS_0 = t_{01}t_{02}t_{03} = r_{011}(x)w_{012}(y)w_{013}(z)w_{01}^{012}(y)w_{01}^{013}(z)c_{01}r_{021}(b)r_{022}(z)w_{023}(d) w_{023}^{023}(d)c_{02}r_{0331}(y)r_{0332}(d)w_{0333}(x)w_{033}^{0333}(x)c_{033}w_{033}^{033}(x)c_{03}$ $pprefSerSubSch_{031} = t_{03}t_{01}t_{02} = r_{0311}(y)w_{0312}(b)a_{031}c_{03}r_{011}(x)w_{012}(y)w_{013}(z)w_{01}^{012}(y)w_{01}^{013}(z)c_{01}r_{021}(b)r_{022}(z)c_{02}$ $pprefSerSubSch_{032} = t_{01}t_{03}t_{02} = r_{011}(x)w_{012}(y)w_{013}(z)w_{01}^{012}(y)w_{013}^{013}(z)c_{01}r_{0321}(d)r_{0322}(z)a_{032}c_{03}$ $r_{021}(b)r_{022}(z)w_{023}(d)w_{02}^{023}(d)c_{02}$ The CP-ASC serialization graphs are shown in Figure 11.

4.5 CP-ASC-Sched: A scheduler based on CP-ASC

In this section we give the outline of a scheduler, called as CP-ASC-Sched (CP-ASC Scheduler) which implements the class CP-ASC. When a transaction wants to read, write or commit, it sends the request to the scheduler CP-ASC-Sched. The scheduler on receiving a request from a transaction, checks with the previously committed and live transactions to see if the request maintains the consistency. If it does, then CP-ASC-Sched allows the request to proceed. Otherwise it does not allow the request to proceed and aborts the corresponding transaction. Consistency is checked by adding the appropriate conflict edges in the

conflict graph and checking for its acyclicity.

The scheduler maintains a conflict graph for each transaction t_P , denoted as G_P . The scheduler CP-ASC-Sched implements CP-ASC using optGraphCons algorithm (described in SubSection3.3) as follows:

- 1. On receiving a request from a transaction t_P to invoke a new transaction t_S , a node v_S is created in G_P . Then CP-ASC-Sched adds completion edges from all the peers of t_S that have terminated earlier to v_S
- 2. On receiving a read request $r_X(d)$ from a transaction t_P , CP-ASC-Sched creates a node v_X for r_X in G_P and adds completion edges from all the peer nodes of r_X that completed before it. Let r_X 's last-Write be w_L , w_L be a commit-write of a node n_L (either a transaction or simple-memory operation) and w_L 's parent be t_Q (t_Q is same as t_P if w_L is a peer of r_X). Also let n_K be a peer node of n_L in whose dSet is the read r_X is contained. Then CP-ASC-Sched adds a w-r conflict edge from v_L to v_K in G_Q . Then, the read r_X is stored as an external-read in all its ancestors starting from t_P ending at n_K .
- 3. On receiving a write request $w_Y(d)$ from a transaction t_P , CP-ASC-Sched adds a node v_Y in the graph. Then it adds completion edges from all the peers of w_Y that have completed before it. For any peer node n_Z of w_Y that has an external-read $r_X(d)$, a r-w conflict edge is added from v_Z to v_Y in G_P . Similarly for any peer node n_T that has a commit-write $w_T(d)$ a w-w conflict edge is added from v_T to v_Y .
- 4. Transaction t_P on receiving a request to commit from a transaction t_X , CP-ASC-Sched adds r-w and w-w conflict edges w.r.t the commit-writes of t_X (similar to step 3). It adds these edges between n_X and its corresponding peers in G_P .

After adding the edges, CP-ASC-Sched checks if these edges form a cycle in G_p . If no cycle is formed, then the requested action of the transaction is permitted. Otherwise, the requested action is not permitted. The corresponding transaction t_P (or t_X) and all its live descendant transactions are aborted (the status of committed sub-transactions of the aborted transaction remain unchanged). The vertex and edges of t_P are removed from the graph. All the reads in t_P 's dSet that are stored as external-reads in its ancestors are removed. In this way, an aborted transaction does not affect any other transaction that follows it. With this implementation, we get that any schedule accepted by CP-ASC-Sched is also in CP-ASC.

We note that the scheduler can be implemented in a completely distributed manner. The different components of the graph can be maintained by different processes. It is not necessary for any single process to have the global information.

5 Discussion

5.1 A simpler Conflict Notion

Having described the idea of optConf, in this subsection we will discuss a variant to the conflict notion. As discussed earlier (in SubSection2.3), a read operation can read from the value written by a write operation only if the write is optVis to the read. Based on this observation, one can come up with a simpler notion of conflict between any arbitrary read and a write operation based only on optVis. This conflict notion does not concern if a given read operation is an external-read or not. We call such a conflict as *vConf*.

For two memory operations m_X, m_Y in the dSets of peers $n_A, n_B, S.vConf(m_X(d), m_Y(d))$ is true if m_X occurs before m_Y in S and one of the following conditions holds:

- 1. r-w conflict: m_X is a read r_X (and not necessarily an external-read) in n_A 's dSet, m_Y is a commitwrite w_Y of n_B or
- 2. w-r conflict: m_X is a commit-write w_X of n_A and m_Y is a read r_Y in n_B 's dSet or
- 3. w-w conflict: m_X is a commit-write w_X of n_A and m_Y is a commit-write w_Y of n_B .

Based on this conflict definition we can define a class of schedules called as *Visible Conflict Preserving Closed Nested Opacity* or *VCP-CNO*. It is very similar to CP-CNO and differs only in condition 3 of CP-CNO definition, the conflict implication. It is defined as below:

vConf Implication: if two memory operations in S are in vConf then they are also in vConf in SS. Formally,

 $\langle \forall m_Y, \forall m_Z : \{m_Y, m_Z\} \subseteq S.evts : (S.vConf(m_Y, m_Z) \Rightarrow SS.vConf(m_Y, m_Z)) \rangle$

We denote this equivalence to such a serial schedule as $(S \approx_{vc} SS)$. From the definitions of vConf and optConf we get that in a given schedule S, if two memory operations m_X, m_Y are in optConf then they are also in vConf i.e. $S.optConf(m_Y, m_Z) \Rightarrow S.vConf(m_Y, m_Z)$. From this one can prove that if any schedule S is in VCP-CNO then it is also in CP-CNO i.e. $(S \in VCP-CNO) \Rightarrow (S \in CP-CNO)$. But the class VCP-CNO is not as generic as CP-CNO. There are some schedules which are in CP-CNO but not in VCP-CNO. The following example illustrates it.

Example 8 Computation Tree:

$$\begin{split} t_0 &: \{t_{init}, t_{01}, t_{02}, t_{03}, t_{fin}\}, \\ t_{01} &: \{r_{011}(x), w_{012}(y), c_{01}\}, \\ t_{02} &: \{r_{021}(d), w_{022}(x), w_{023}(y), c_{02}\}, \\ t_{03} &: \{t_{031}, t_{032}, sm_{033} = w_{033}(z), c_{03}\}, \\ t_{031} &: \{sm_{0311} = r_{0311}(z), sm_{0312} = w_{0312}(y), c_{031}\}, \\ t_{032} &: \{sm_{0321} = r_{0321}(y), sm_{0322}(x) = w_{0322}(x), c_{032}\} \\ Schedule: \\ S10 :: r_{011}(x)r_{021}(d)w_{012}(y)r_{0311}(z)w_{012}^{01}(y)c_{01}w_{0312}(y)w_{031}^{0312}(y)c_{031}w_{022}(x)r_{0321}(y)w_{0322}(x)w_{032}^{0322}(x) \end{split}$$

 $S10: r_{011}(x)r_{021}(d)w_{012}(y)r_{0311}(z)w_{012}^{01}(y)c_{01}w_{0312}(y)w_{031}^{0312}(y)c_{031}w_{022}(x)r_{0321}(y)w_{0322}(x)w_{032}^{0322}(x)\\ c_{032}w_{023}(y)w_{02}^{022}(x)w_{02}^{023}(y)c_{02}w_{033}(z)w_{03}^{031}(y)w_{03}^{032}(x)w_{03}^{033}(z)c_{03}$

The corresponding computation tree is shown in Figure 12. The lastWrites for all the reads in the above example are:

$$\begin{split} &\{r_{011}(x): w_{init}(x), r_{021}(d): w_{init}(d), r_{0311}(z): w_{init}(z), r_{0321}(y): w_{031}^{0312}(y)\} \\ & \text{The set of all optConfs in the above example:} \\ &\{(r_{011}(x), w_{02}^{022}(x)), (r_{011}(x), w_{03}^{032}(x)), (r_{0311}(z), w_{033}(z)), (w_{02}^{022}(x), w_{03}^{032}(x)), (w_{031}^{0312}(y), r_{0321}(y)), (w_{01}^{012}(y), w_{03}^{023}(y)), (w_{02}^{023}(y), w_{03}^{031}(y))\} \end{split}$$

The set of all vConfs in the above example:

 $\{ (r_{011}(x), w_{02}^{022}(x)), (r_{011}(x), w_{03}^{032}(x)), (r_{0311}(z), w_{033}(z)), (w_{02}^{022}(x), w_{03}^{032}(x)), (w_{031}^{0312}(y), r_{0321}(y)), (w_{01}^{012}(y), w_{02}^{023}(y)), (w_{02}^{023}(y), w_{03}^{031}(y)), (w_{01}^{012}(y), r_{0321}(y)), (r_{0321}(y), w_{02}^{023}(y)) \}$

We have underlined the extra conflicts in this example. We did not mention the conflicts caused by t_{init} and t_{fin} in the above conflicts. We discussed optGraphCons algorithm in the previous section to verify if a given schedule S is in CP-CNO or not. This algorithm can be easily adapted to verify if the schedule S is in VCP-CNO or not. This algorithm differs only in the way conflict edges are added. We add a conflict edge when two memory operations are in vConf instead of optConf. We call this algorithm as vGraphCons algorithm.

Figure 12: The computation tree for Example 8

Using optGraphCons algorithm and vGraphCons algorithm we generate the serialization graphs based on both these conflicts. The graphs are shown in Figure 13. The graphs show that the schedule S10 is in CP-CNO but not in VCP-CNO. As one can see from the conflict sets, $r_{0321}(y)$ and $w_{02}^{023}(y)$ are in vConf but not in optConf. They cause the cycle between n_{03} and n_{02} in the graph of VCP-CNO. This shows that VCP-CNO is a proper subset of CP-CNO. The optConf equivalent serial schedule is:

 $\begin{array}{l} r_{011}(x)w_{012}(y)w_{012}^{01}(y)c_{01}r_{021}(d)w_{022}(x)w_{023}(y)w_{02}^{022}(x)w_{02}^{023}(y)c_{02}r_{0311}(z)w_{0312}(y)w_{031}^{0312}(y)c_{031}r_{0321}(y)\\ w_{0322}(x)w_{032}^{0322}(x)c_{032}w_{033}(z)w_{03}^{031}(y)w_{03}^{032}(x)w_{03}^{033}(z)c_{03} \end{array}$

5.2 Schedule Partial Order

The second condition in the definitions of the classes CNO and ASC is schedule-partial-order. This condition specifies that for any two peer nodes (transactions or simple-memory operation), say n_Y , n_Z , in the schedule S such that n_Y executes before n_Z then in the corresponding serial schedule SS, n_Y executes before n_Z as well. But for some nested STM systems this may not be sufficient. The application that generates the transactions might dictate the STM to be more strict. These systems might want that the condition schedule-partial-order to be modified such that if any node n_Y occurs before any other transaction n_Z in S, then in SS also n_Y occurs before n_Z . That is, the nodes n_Y and n_Z need not be peers but any arbitrary nodes. Thus the condition 2 of CNO can restated as follows:

schedule-partial-order Equivalence: For any two nodes n_X, n_Y in the computation tree represented by S if n_Y occurs before n_Z in S then n_Y occurs before n_Z in SS as well. Formally,

 $\langle S : \{n_Y, n_Z\} \in S.nodes : (n_Y <_S n_Z) \Rightarrow (n_Y <_{SS} n_Z) \rangle$

This modification can be made to the definitions of CP-CNO and CP-ASC. To accommodate this change in the graph construction optGraphCons algorithm we modify the way completion edges are added. Consider the nodes n_Y, n_Z in S for which $(n_Y <_S n_Z)$. Let t_P be a transaction such that it is the least common ancestor of n_Y, n_Z , i.e., $S.lca(n_Y, n_Z) = t_P$. Since n_Y occured before n_Z in S, n_Y cannot be a ancestor of

Figure 13: These are the serialization graphs based on optConf and vConf for the schedule in Example 8

 n_Z nor the vice-versa. Hence t_P cannot be the same as n_Y or n_Z but an ancestor to both. Thus t_P will have two children n_R and n_T such that n_Y is in $S.dSet(n_R)$ and n_Z is in $T.dSet(n_Q)$. Now we add a completion edge from n_R to n_T in the graph. Then we check for acyclicity of the resulting graph. If the graph is acyclic then in the resultant schedule RS generated, n_Y will be before n_Z i.e. $n_Y <_{RS} n_Z$.

6 Conclusion

Composing simple transactions to build larger transaction systems is extremely useful property which forms the basis of modular programming. In STMs this can be achieved through nesting of transactions. There have been many implementations of nested transactions in the past few years. But none of them provide a precise and efficient formulation of the guarantees that a nested software transactional memory system should provide.

Concurrent executions of transactions in Transactional Memory are expected to ensure that aborted transactions also, as the committed ones, read consistent values. In addition, the property that aborted transactions should not affect the consistency for the other transactions following it is desirable. Incorporating these simple-sounding criteria has been non-trivial even for non-nested transactions as can be seen in recent publications [5, 9, 3].

In this paper, we have considered these requirements for closed nested transactions. We have also defined new conflict-preserving classes that allow polynomial membership test, by means of constructing conflict-graphs and checking acyclicity. Further, the conflict preserving classes have resulted in the elegant design of a scheduler. The conflict-graph has separate components for each (parent) sub-transaction. Each component can be maintained at a different site (process executing the sub-transaction) autonomously and the checking can be done in a distributed manner.

We have chosen a novel representation of schedules, namely, adding commit-writes, that facilitates easy association of lastWrites for the read operations. We believe that this representation will be useful for dealing with commit-pending transactions also. Our future work includes the study of how the above two properties

manifest in executions with open nested transactions and with non-transactional steps.

References

- Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested Parallelism in Transactional Memory. In PPoPP '08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 163–174, New York, NY, USA, 2008. ACM.
- [2] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Memory Models for Open-Nested Transactions. In MSPC '06: Proceedings of the 2006 Workshop on Memory System Performance and Correctness, pages 70–81, New York, NY, USA, 2006. ACM.
- [3] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Towards Formally Specifying and Verifying Transactional Memory. In *REFINE*, 2009.
- [4] Rachid Guerraoui, Thomas Henzinger, and Vasu Singh. Permissiveness in Transactional Memories. In DISC '08: Proc. 22nd International Symposium on Distributed Computing, pages 305–319, sep 2008. Springer-Verlag Lecture Notes in Computer Science volume 5218.
- [5] Rachid Guerraoui and Michal Kapalka. On the Correctness of Transactional Memory. In PPoPP '08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel programming, pages 175–184, New York, NY, USA, 2008. ACM.
- [6] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable Memory Transactions. In PPoPP '05: Proceedings of the tenth ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, pages 48–60, New York, NY, USA, 2005. ACM.
- [7] Maurice Herlihy and J. Eliot B.Moss. Transactional Memory: Architectural Support for Lock-free Data Structures. SIGARCH Comput. Archit. News, 21(2):289–300, 1993.
- [8] Damien Imbs, José Ramon de Mendivil, and Michel Raynal. Brief announcement: Virtual World Consistency: a new condition for STM Systems. In PODC '09: Proceedings of the 28th ACM symposium on Principles of Distributed Computing, pages 280–281, New York, NY, USA, 2009. ACM.
- [9] Damien Imbs and Michel Raynal. A Lock-Based STM Protocol that satisfies Opacity and Progressiveness. In OPODIS '08: Proceedings of the 12th International Conference on Principles of Distributed Systems, pages 226–245, Berlin, Heidelberg, 2008. Springer-Verlag.
- [10] J.E.B.Moss. Open Nested Transactions: Semantics and Support. *In Workshop on Memory Performance Issues*, 2006.
- [11] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D. Hill, Ben Liblit, Michael M. Swift, and David A. Wood. Supporting nested transactional memory in logTM. In ASPLOS-XII: Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, pages 359–370, New York, NY, USA, 2006. ACM.
- [12] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory: Model and Architecture Sketches. Sci. Comput. Program., 63(2):186–201, 2006.

- [13] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L. Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman. Open Nesting in Software Transactional Memory. In PPoPP '07: Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of parallel programming, pages 68–78, New York, NY, USA, 2007. ACM.
- [14] Christos H. Papadimitriou. The serializability of Concurrent Database Updates. J. ACM, 26(4):631– 653, 1979.
- [15] R. F. Resende and A. El Abbadi. On the Serializability Theorem for Nested Transactions. *Inf. Process. Lett.*, 50(4):177–183, 1994.
- [16] Nir Shavit and Dan Touitou. Software Transactional Memory. In PODC '95: Proceedings of the fourteenth annual ACM symposium on Principles of distributed computing, pages 204–213, New York, NY, USA, 1995. ACM.
- [17] K. Vidyasankar. Generalized Theory of Serializability. Acta Inf., 24(1):105–109, 1987.
- [18] Gerhard Weikum and Gottfried Vossen. *Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency Control and Recovery.* Morgan Kaufmann, 2002.