
Computer Science

Technical Report #2008-05

The Use of Computational Intelligence in Intrusion
Detection Systems: A Review

by

Shelly Xiaonan Wu* Wolfgang Banzhaf

Email: xiaonan@cs.mun.ca, banzhaf@cs.mun.ca

Department of Computer Science
Memorial University of Newfoundland

St. John’s, NL, Canada A1B 3X5

November 2008

mailto:xiaonan@cs.mun.ca,
mailto:banzhaf@cs.mun.ca

The Use of Computational Intelligence in Intrusion Detection Systems: A
Review

Shelly Xiaonan Wu ∗ Wolfgang Banzhaf
Computer Science Department, Memorial University of Newfoundland, St John’s, NL A1B 3X5, CA

Abstract

Intrusion detection based upon computational intelligence is currently attracting considerable interest from the research community.
Characteristics of computational intelligence (CI) systems, such as adaptation, fault tolerance, high computational speed and error
resilience in the face of noisy information fit the requirements of building a good intrusion detection model. Here we want to provide
an overview of the research progress in applying CI methods to the problem of intrusion detection. The scope of this review will be
on core methods of CI, including artificial neural networks, fuzzy systems, evolutionary computation, artificial immune systems,
swarm intelligence, and soft computing. The research contributions in each field are systematically summarized and compared,
allowing us to clearly define existing research challenges, and to highlight promising new research directions. The findings of this
review should provide useful insights into the current IDS literature and be a good source for anyone who is interested in the
application of CI approaches to IDSs or related fields.

Key words: Survey, Intrusion detection, Computational intelligence, Artificial neural networks, Fuzzy systems, Evolutionary computation,
Artificial immune systems, Swarm intelligence, Soft computing

1. Introduction

Traditional intrusion prevention techniques, such as fire-
walls, access control and encryption, have failed to fully
protect networks and systems from increasingly sophisti-
cated attacks and malwares. As a result, intrusion detection
systems (IDS) have become an indispensable component of
security infrastructure used to detect these threats before
they inflict widespread damage.
When building an IDS one needs to consider many is-

sues, such as data collection, data pre-processing, intrusion
recognition, reporting, and response. Among them, intru-
sion recognition is at the heart. Audit data are examined
and compared with detection models, which describe the
patterns of intrusive or benign behavior, so that both suc-
cessful and unsuccessful intrusion attempts can be identi-
fied.
Since Denning first proposed an intrusion detection

model in 1987 [74], the research efforts have been focused
on how to effectively and accurately construct detection
models. Between the late 1980s and the early 1990s, a

∗ Corresponding author. Tel.: +1 709 737 6947; fax: +1 709 737 2009.
Email addresses: xiaonan@cs.mun.ca (Shelly Xiaonan Wu),

banzhaf@cs.mun.ca (Wolfgang Banzhaf).

combination of expert systems and statistical approaches
was very popular. Detection models were derived from the
domain knowledge of security experts. From the mid-1990s
to the late 1990s, acquiring knowledge of normal or ab-
normal behavior had turned from manual to automatic.
Artificial intelligence and machine learning techniques
were used to discover the underlying models from a set of
training data. Commonly used methods were rule based
induction, classification and data clustering.

In fact, the process of automatically constructing models
from data is not trivial, especially for intrusion detection
problems. This is because intrusion detection faces such
problems as huge network traffic volumes, highly imbal-
anced attack class distribution, the difficulty to realize de-
cision boundaries between normal and abnormal behavior,
and requiring continuous adaptation to a constantly chang-
ing environment. Artificial intelligence and machine learn-
ing have shown limitations to achieving high detection accu-
racy and fast processing times when confronted with these
requirements. For example, the detection model in the win-
ning entry of the KDD99 competition was composed of 50
× 10 C5 decision trees. The second-placed entry consisted
of a decision forest with 755 trees [85]. Fortunately, compu-
tational intelligence techniques, known for their ability to

adapt and to exhibit fault tolerance, high computational
speed and resilience against noisy information, compensate
for the limitations of these two approaches.

The aim of this paper is twofold. The first is to present a
comprehensive survey on research contributions that inves-
tigate utilization of computational intelligence (CI) meth-
ods in building intrusion detection models. The scope of
this survey is on the core methods in CI, which encompass
artificial neural networks, fuzzy sets, evolutionary compu-
tation methods, artificial immune systems, and swarm in-
telligence. Applications of these methods reveal that each
of them has pros and cons. Soft computing has the syn-
ergistic power to intertwine the pros of these methods in
such a way that their weaknesses will be compensated. Soft
computing, therefore, will be a part of this discussion, too.
The second aim is to define existing research challenges,
and to highlight promising new research directions.

The remainder of this review is divided into several sec-
tions, organized as follows. Section 2 defines IDSs and
computation intelligence. Section 3 introduces commonly
used datasets and performance evaluation measures, with
the purpose of removing confusion found in some research
work. Section 4 categories, compares and summarizes core
methods in CI that have been proposed to solve intru-
sion detection problems. Section 5 compares the strengths
and limitations of these approaches, and identifies future
research trends and challenges. We end with concluding
remarks in section 6.

2. Background

2.1. Intrusion Detection

An intrusion detection system dynamically monitors the
events taking place in a monitored system, and decides
whether these events are symptomatic of an attack or
constitute a legitimate use of the system [71]. Figure 1
depicts the organization of an IDS where solid arrows
indicate data/control flow while dotted arrows indicate a
response to intrusive activities.

Fig. 1. Organization of a generalized intrusion detection system

In general, IDSs fall into two categories according to the
detection methods they employ, namely (i) misuse detec-
tion and (ii) anomaly detection. Misuse detection identifies

intrusions by matching observed data with pre-defined de-
scriptions of intrusive behavior. So well-known intrusions
can be detected efficiently with a very low false positive
rate. For this reason, the approach is widely adopted in
the majority of commercial systems. However, intrusions
are usually polymorph, and evolve continuously. Misuse
detection will fail easily when facing unknown intrusions.
One way to address this problem is to regularly update the
knowledge base, either manually which is time consuming
and laborious, or automatically with the help of supervised
learning algorithms. Unfortunately, datasets for this pur-
pose are usually expensive to prepare, as they require label-
ing of each instance in the dataset as normal or a type of
intrusion. Another way to address this problem is to follow
the anomaly detection model proposed by Denning [74].

Anomaly detection is orthogonal to misuse detection. It
hypothesizes that abnormal behavior is rare and different
from normal behavior. Hence, it builds models for normal
behavior and detects anomaly in observed data by notic-
ing deviations from these models. There are two types of
anomaly detection [48]. The first is static anomaly detec-
tion, which assumes that the behavior of monitored targets
never changes, such as system call sequences of an Apache
service; the second type is dynamic anomaly detection. It
extracts patterns from behavior habits of end users or net-
works/hosts usage history. Sometimes these patterns are
called profiles.

Clearly, anomaly detection has the capacity of detecting
new types of intrusions, and only requires normal data
when building the profiles. However, its major difficulty lies
in discovering boundaries between normal and abnormal
behavior, due to the deficiency of abnormal samples in the
training phase. Another difficulty is to adapt to constantly
changing normal behavior, especially for dynamic anomaly
detection.
In addition to the detection method, there are other

characteristics one can use to classify IDSs, as shown in
Figure 2.

Central

Distributed

Response to Intrusion

Audit Data Source

Locus of Detection

Detection Method

Intrusion Detection System
Hosts

Networks

Passive

Active

Misuse

Anomaly

Fig. 2. Characteristics of intrusion detection systems

2.2. Computational Intelligence

Computational Intelligence (CI) is a fairly new research
field with competing definitions. For example, in Computa-
tional Intelligence - A Logical Approach [234], the authors
define CI as
“Computational Intelligence is the study of the design
of intelligent agents. ... An intelligent agent is a system

2

that acts intelligently: What it does is appropriate for
its circumstances and its goal, it is flexible to changing
environments and changing goals, it learns from experi-
ence, and it makes appropriate choices given perceptual
limitations and finite computation.”

In contrast, Bezdek [34] defined CI as
“A system is computational intelligent when it: deals with
only numerical (low-level) data, has pattern recognition
components, does not use knowledge in the artificial intel-
ligence sense; and additionally when it (begins to) exhibit
i) computational adaptivity, ii) computational fault toler-
ance, iii) speed approaching human-like turnaround, and
iv) error rates that approximate human performance.”
We subscribe to the later definition. From this notion,

and through the discussion of Craenen and Eiben [57], and
Duch [82], we can summarize that computational intelli-
gence systems possess the characteristics of computational
adaptation, fault tolerance, high computational speed and
less error prone to noisy information.

CI is different from the well-known field of Artificial In-
telligence (AI). AI handles symbolic knowledge representa-
tion, while CI handles numeric representation of informa-
tion; AI concerns itself with high-level cognitive functions,
while CI is concerned with low-level cognitive functions; AI
analyzes the structure of a given problem and attempts to
construct an intelligent system based upon this structure,
thus operating in a top-down manner, while the structure
is expected to emerge from an unordered beginning in CI,
thus operating in a bottom-up manner [57, 82].

Although there is not yet a full agreement on what com-
putational intelligence exactly is, there is a widely accepted
view on which areas belong to CI: artificial neural networks,
fuzzy sets, evolutionary computation, artificial immune sys-
tems, and swarm intelligence. These approaches, except
for fuzzy sets, are capable of the autonomous acquisition
and integration of knowledge, and can be used in either su-
pervised or unsupervised learning mode. The two learning
schemes construct data-driven models in a training phase,
and verify their performance in a testing phase.

In the intrusion detection field, supervised learning usu-
ally produces classifiers for misuse detection from class-
labeled training data. Classifiers basically are a function
mapping data points to corresponding class labels. Unsu-
pervised learning distinguishes itself from supervised learn-
ing by the fact that no class-labeled data available in the
training phase. It groups data points based upon their sim-
ilarities. Unsupervised learning satisfies the hypothesis of
anomaly detection, hence is usually employed in anomaly
detection.

3. Datasets and Performance Evaluation

In this section, we will summary popular benchmark
datasets and performance evaluation measures in intrusion
detection domain, with the purpose of clarifying the misuse
of these terms we have found during the review process.

3.1. Datasets

Since computational intelligence approaches build de-
tection models from data, the quality of training datasets
directly affects the quality of trained models. For the re-
search works we survey here, data is normally collected
from three sources: data packages from networks, command
sequences from user input, or system low-level information,
such as system call sequences, log files, system error logs,
and CPU/memory usage. We list some commonly used
benchmarks in Table 1. All of these datasets have been
used in either misuse detection or anomaly detection.

The DARPA-Lincoln datasets and the KDD99
dataset In 1998, MIT’s Lincoln laboratory conducted the
first and most comprehensive research project to evaluate
the performance of different intrusion detection method-
ologies, under the DARPA ITO and Air Force Research
Laboratory sponsorship. This dataset contains seven weeks
of training data and two weeks of testing data. The at-
tack data include more than 300 instances of 38 different
attacks launched against victim UNIX hosts, falling into
one of the four categories: Denial of Service (DoS), Probe,
U2R (Users to Root), and R2L (Remote to Local). For
each week, inside and outside network traffic data, audit
data recorded by Sun Microsystem’s Basic Security Mod-
ule(BSM) on Solaris hosts, and file system dumps from
UNIX hosts were collected. In 1999, the evaluation was
held by Lincoln laboratory again. Three weeks of training
and two weeks of test data were generated this time. More
than 200 instances of 58 attack types were launched against
victim UNIX and Windows NT hosts and a Cisco router.
In addition, host audit data were extended to Window NT
systems. In 2000, three additional scenario-specific datasets
were generated to address distributed DoS and Windows
NT attacks. Detailed descriptions of these datasets can
be found at http://www.ll.mit.edu/IST/ideval/data/
data_index.html.
The KDD99 dataset was derived from the DARPA98

network traffic data in 1999 by a Bro program which assem-
bled individual TCP packets into TCP connections. It was
the benchmark dataset used in the International Knowl-
edge Discovery and Data Mining Tools Competition, and
also the most popular dataset ever used in the intrusion
detection field. Each TCP connection has 41 features with
a label which specifies the status of a connection as either
being normal or a specific attack type [2]. There are 38
numeric features and 3 symbolic features, falling into the
following four categories:
(i) Basic Features: 9 basic features were used to describe

each individual TCP connection.
(ii) Content Features: 13 domain knowledge related fea-

tures were used to indicate suspicious behavior having
no sequential patterns in the network traffic.

(iii) Time-based Traffic Features: 9 features were used to
summarize the connections in the past two seconds
that had the same destination host or the same service

3

http://www.ll.mit.edu/IST/ideval/data/data_index.html
http://www.ll.mit.edu/IST/ideval/data/data_index.html

Table 1
Summary of Popular Datasets in Intrusion Detection Domain

Data Source Dataset Name Abbreviation

Network Traffic DARPA 1998 TCPDump Files DARPA98

DARPA 1999 TCPDump Files DARPA99

KDD99 Dataset KDD99

10% KDD99 Dataset KDD99-10

Internet Exploration Shootout Dataset IES

User Behavior UNIX User Dataset UNIXDS

System Call Sequences DARPA 1998 BSM Files BSM98

DARPA 1999 BSM Files BSM99

University of New Mexico Dataset UNM

as the current connection.
(iv) Host-based Traffic Features: 10 features were con-

structed using a window of 100 connections to the
same host instead of a time window, because slow
scan attacks may occupy a much larger time interval
than two seconds,

The training set contains 4,940,000 data instances, cov-
ering normal network traffic and 24 attacks. The test set
contains 311,029 data instances with a total of 38 attacks,
14 of which do not appear in the training set. This dataset
is very large, so 10% of this KDD99 training set are fre-
quently used.
McHugh [211] published an in-depth criticism of the

DARPA dataset, arguing that some methodologies used in
the evaluation are questionable and may have biased its
results. For example, normal and attack data have unre-
alistic data rates; training datasets for anomaly detection
are not adequate for its intended purpose; no effort have
been made to validate that false alarm behavior of IDSs
under test shows no significantly difference on real and syn-
thetic data. Malhony and Chan [207] confirmed McHugh’s
findings by their experiments, which discovered that many
attributes had small and fixed ranges in simulation, but
large and growing ranges in real traffic.

As sharing the same root with the DARPA dataset, the
KDD99 dataset inherits the above limitations. In addition,
the empirical study conducted by Sabhnani et al. [239]
stated that “KDD training and test data subsets represent
dissimilar target hypotheses for U2R and R2L attack cat-
egories”. According to their analysis, 4 new U2R attacks
appear in test data, which constitutes 80% data of all U2R
data in the test data. Similiarly, 7 new R2L attacks are
presented in the testing data, and constitute more than
60% of R2L data in the test data. This may well explain
why the detection results for U2R and R2L attacks are not
satisfactory in most IDSs.
Despite all this criticism, however, both the DARPA

Lincoln and the KDD99 datasets continue to be the largest
publicly available and the most sophisticated benchmarks
for researchers in evaluating intrusion detection algorithms
or machine learning algorithms.

The Internet Exploration Shootout Dataset is an-
other project that tries to evaluate various data explo-

ration techniques. This dataset consists of an attack-free
set and 4 sets containing IP spoofing attacks, guessing
rlogin or ftp passwords, scanning attacks and network
hopping attacks, respectively. The data was captured by
TCPDump in about 16 minutes on the MITRE Corp. net-
work. Only TCP and UDP packets with 13 attributes
were collected. For detailed information about the pack-
ets and for downloading the dataset, please refer to http:
//ivpr.cs.uml.edu/shootout/network.html.

In our survey, this dataset was mainly used by Kim
and Bentley, interested in research on artificial immune
system-based IDSs. Balthrop et al., however, questioned
this dataset because “it only takes place over a period of
about 16 minutes, not enough time to reasonably charac-
terize normal behavior” [29].

Other Benchmarks include the University of New
Mexico dataset and the UNIX user dataset. The former
was provided by the team of Stephanie Forrest at the
University of New Mexico. This team collected several
datasets of system calls executed by different programs.
For more information, please refer to http://www.cs.unm.
edu/~immsec/systemcalls.htm. The later dataset con-
tains 9 sets of sanitized user data drawn from the command
histories of 8 UNIX computer users at Purdue University
over the course of up to 2 years. For more information
on this dataset please refer to http://kdd.ics.uci.edu/
databases/UNIX_user_data/UNIX_user_data.html.

Self-produced Datasets Since these benchmarks have
shown some shortcomings, researchers sometimes produce
their own datasets. However, in a real network environment,
it is very hard to guarantee that supposedly normal data are
intrusion free indeed. The robust approach introduced by
Rhodes et al. [237] is able to remove anomalies from train-
ing data. Another reason for using self-produced dataset is
incomplete training sets, which would decrease the accu-
racy of IDSs. Therefore, artificial data are generated and
merged into the training sets [17, 88, 109, 121, 137, 257].

3.2. Performance Evaluation

3.2.1. Confusion Matrix
The effectiveness of an IDS is evaluated by its ability to

give a correct classification. According to the real nature of

4

http://ivpr.cs.uml.edu/shootout/network.html
http://ivpr.cs.uml.edu/shootout/network.html
http://www.cs.unm.edu/~immsec/systemcalls.htm
http://www.cs.unm.edu/~immsec/systemcalls.htm
http://kdd.ics.uci.edu/databases/UNIX_user_data/UNIX_user_data.html
http://kdd.ics.uci.edu/databases/UNIX_user_data/UNIX_user_data.html

a given event and the prediction from an IDS, four possi-
ble outcomes are shown in Table 2, which is known as the
confusion matrix. True negatives as well as true positives
correspond to a correct operation of the IDS; that is, events
are successfully labeled as normal and attacks, respectively;
false positives refer to normal events being classified as at-
tacks; false negatives are attack events incorrectly classified
as normal events.
Table 2

Confusion Matrix

Predicted Class

Negative Class Positive Class

(Normal) (Attack)

Negative Class True Negative False Positive

Actual (Normal) (TN) (FP)

Class Positive Class False Negative True Positive

(Attack) (FN) (TP)

Based on the above confusion matrix, the evaluation
mainly applies the following criteria to measure the perfor-
mance of IDSs:
– True Negative Rate (TNR):

TN

TN + FP
, also known as

Specificity.

– True Positive Rate (TPR):
TP

TP + FN
, also known as

Detection Rate (DR) or Sensitivity. In information re-
trieval, this is called Recall.

– False Positive Rate (FPR):
FP

TN + FP
= 1−specificity,

also known as False Alarm Rate (FAR).

– False Negative Rate (FNR):
FN

TP + FN
= 1 −

sensitivity.

– Accuracy:
TN + TP

TN + TP + FN + FP

– Precision:
TP

TP + FP
, which is another information re-

trieval term, and often is paired with “Recall”.
The most popular performance metrics is detection rate
(DR) together with false alarm rate (FAR). An IDS should
have a high DR and a low FAR. Other commonly used
combinations include Precision and Recall, or Sensitivity
and Specificity.

3.2.2. Receiver Operating Characteristic
The Receiver Operating Characteristic (ROC) has its ori-

gin in radar signal detection techniques developed during
World War II, which was used to characterize the tradeoff
between hit rate and false alarm rate over a noisy channel
[211]. In intrusion detection, this method is used for count-
ing detection costs or evaluating various detection learning
schemes.

An optimal IDS should maximize the DR and minimize
the FAR. Normally, the tradeoff between DR and FAR is
decided by various parameters of the IDS, such as detection
threshold, or the size of a sliding window. The ROC curve

plots DR on the Y-axis, against the FAR on the X-axis at
different parameter settings. As depicted in Figure 3, by

Fig. 3. ROC curves showing the average intrusion detection rates of
3 systems.

changing the values of some parameters, one can obtain
the rates shown on the lines. The ROC curves provide us
an effective way to compare the performance of systems de-
rived from different parameter settings or the performance
of different systems. Figure 3 shows that system1 averagely
outperforms the other two systems in this example.

4. Algorithms

In this section, we will review the core computational
intelligence approaches that have been proposed to solve
intrusion detection problems. These include artificial neural
networks, fuzzy sets, evolutionary computation, artificial
immune systems, swarm intelligence and soft computing.

4.1. Artificial Neural Networks

An Artificial Neural Network (ANN) consists of a col-
lection of processing units called neurons that are highly
interconnected according to a given topology. ANNs have
the ability of learning-by-example and generalization from
limited, noisy, and incomplete data. They have been suc-
cessfully employed in a broad spectrum of data-intensive
applications. In this section, we will review their contribu-
tions and performance on intrusion detection domain. This
section is organized by the types of ANNs illustrated in
Figure 4

ANNs

Supervised Learning

Unsupervised Learning

Feed Forward NN

Recurrent NN

Elman Recurrent NN

Radial Basis Function (RBF) NN

Multi−layered Feed Forward

 (MLFF) NN

Cerebellar Model Articulation

Controller (CMAC) NN

Self−Organizing Maps (SOM)

Unsupervised Adaptive Resonance Theory (ART)

Fig. 4. Types of ANNs reviewed in this section.

5

4.1.1. Supervised Learning
4.1.1.1. Feed Forward Neural Networks Feed forward
neural networks are the first and arguably the simplest
type of artificial neural networks devised. Two types of feed
forward neural networks are commonly used in modeling
either normal or intrusive patterns.

Multi-layered Feed Forward (MLFF) Neural Net-
works MLFF networks use various learning techniques,
the most popular being back-propagation (MLFF-BP). In
the early development of intrusion detection, MLFF-BP
networks were applied primarily to anomaly detection on
the user behavior level, e.g. [257] and [238]. [257] used in-
formation, such as command sets, CPU usage, login host
addresses, to distinguish between normal and abnormal
behavior, while [238] considered the patterns of commands
and their frequency.
Later, research interests shifted from user behavior to

software behavior described by sequences of system calls.
This is because system call sequences are more stable than
commands. Ghosh et al. built a model for the lpr program
[109] and the DARPA BSM98 dataset [108] using MLFF-
BP, respectively. A leaky bucket algorithm provided some
memory of anomalous events diagnosed by the network, re-
sulting in the temporal characteristics of program patterns
being accurately captured.

Network traffic is another indispensable data source. Can-
nady et al. [40] applied MLFF-BP on 10,000 network pack-
ets collected from a simulated network environment for
misuse detection purpose. Although the training/testing
iterations required 26.13 hours to complete, their experi-
ments showed the potential of MLFF-BP as a binary clas-
sifier to correctly identify each of the embedded attacks in
the test data. MLFF-BP can also be used as a multi-class
classifier (MCC). MCC neural networks can either have
multiple output neurons [218] or assemble multiple binary
neural network classifiers [287]. Apparently, the latter is
more flexible than the former when facing a new class.
Except for the BP learning algorithm, there are many

other learning options in MLFF networks. [219] compared
12 different learning algorithms on the KDD99 dataset,
and found that resilient back propagation achieved the
best performance among the neural networks in terms of
accuracy (97.04%) and training time (67 epochs).

Radial Basis Function Neural Networks Radial Ba-
sis Function (RBF) neural networks are another widely
used type of feed forward neural networks. Since they per-
form classification by measuring the distances between in-
puts and the centers of the RBF hidden neurons, they are
much faster than time consuming back-propagation, and
more suitable for problems with large sample size [46].

Research work, such as [144], [197], [236], [288], employed
RBF to learn multiple local clusters for well-known attacks
and for normal events. Other than being a classifier, the
RBF network was also used to fuse results from multiple
classifiers [46]. It outperformed five different decision fu-
sion functions, such as Dempster-Shafer combination and

Weighted Majority Vote.
Jiang et al. [160] reported a novel approach which inte-

grates both misuse and anomaly detections in a hierarchi-
cal RBF network framework. In the first layer, an RBF
anomaly detector identifies whether an event is normal or
not. Anomaly events then pass an RBF misuse detector
chain, with each detector being responsible for a specific
type of attack. Anomaly events which could not be clas-
sified by any misuse detectors were saved to a database.
When enough anomaly events were gathered, a C-Means
clustering algorithm clustered these events into different
groups; a misuse RBF detector was trained on each group,
and added to the misuse detector chain. In this way, all
intrusion events will automatically and adaptively be de-
tected and labeled.

Comparison between MLFF-BP and RBF net-
works Since RBF and MLFF-BP networks are widely used,
a comparison between them is naturally required. [160] and
[288] compared the RBF and MLFF-BP networks for mis-
use and anomaly detection on the KDD99 dataset. Their
experiments have shown that for misuse detection, BP has
a slightly better performance than RBF in terms of detec-
tion rate and false positive rate, but requires longer train-
ing time, while for anomaly detection, the RBF network
improves the performance with a high detection rate and
a low false positive rate, and requires less training time
(cutting it down from hours to minutes). All in all, RBF
networks achieve better performance. The same conclusion
was drawn by Hofmann et al. on the DARPA98 dataset
[143, 144].

Another interesting comparison has been made between
the binary and decimal input encoding schemes of MLFF-
BP and RBF [197]. The results showed that binary encod-
ing has lower error rates than decimal encoding, because
decimal encoding only computes the frequency without con-
sidering the order of system calls. Decimal encoding, how-
ever, handles noise well and the classifiers can be trained
with fewer data. Furthermore, there are fewer input nodes
in decimal encoding than in binary encoding, which de-
creases the training and testing time and simplifies the
network structure.

4.1.1.2. Recurrent Neural Networks Detecting attacks
spread in a period of time, such as slow port scanning, is
important but difficult. In order to capture the temporal
locality in either normal patterns or anomaly patterns,
some researchers used time windows or similar mechanisms
[108, 144, 197, 289], or chaotic neurons [281] to provide
BP networks with external memory. However, window size
should be adjustable in predicting user behavior. When
users perform a particular job, their behavior is stable and
predictable. At such times a large window size is needed to
enhance deterministic behavior; when users are changing
from one job to another, behavior becomes unstable and
stochastic, so a small window size is needed in order to
forget quickly the meaningless past [72]. The incorporation

6

of memory in neural networks has led to the invention of
recurrent links, hence the name Recurrent Neural Networks
(RNN) or Elman network, as shown in Figure 5.

Output LayerInput Layer Hidden Layer

Input Nodes

Context
Nodes

(a) RNN

Output LayerHidden LayerInput Layer

(b) MLFF

Fig. 5. Compared with MLFF, parts of the output of RNN at time t

are inputs in time t+1, thus creating internal memories of the neural

network.

Recurrent networks were initially used as a forecaster,
where a network predicted the next events in an input
sequence. When there is a sufficient deviation between
the predicted output and the actual events, an alarm is
issued. Debar et al. [70, 72] modified the traditional Elman
recurrent model by giving input at both time t-1 and time t.
The learning process used standard back propagation. The
authors showed that the accuracy of predicting the next
command, given a sequence of previous commands, could
reach up to 80%. Ghosh et al. [107] compared the recurrent
network with an MLFF-BP network as a forecaster on
program system call sequences. The results showed that
recurrent networks achieved the best performance with a
detection accuracy of 77.3% and zero false positives.

Recurrent networks are also trained as classifiers. Cheng
et al. [51] employed a recurrent network to detect network
anomalies in the KDD99 dataset, since network traffic data
have the temporal locality property. A truncated-Back-
Propagation Through Time (T-BPTT) learning algorithm
was chosen to accelerate training speed of an Elman net-
work. They argued for the importance of payload informa-
tion in network packets. Retaining the information in the
packet header but discarding the payload leads to an unac-
ceptable information loss. Their experiment indicated that
an Elman network with payload information outperformed
an Elman network without such information. Al-Subaie
et al. [17] built a classifier with an Elman network for the
UNM system calls dataset. Their paper is a good source of
the comparison of ELMAN and MLFF networks in terms
of network structure, computational complexity, and clas-
sification performance. The two research works both con-
firmed recurrent networks outperform MLFF networks in
detection accuracy and generalization capability. Al-Subaie
et al. in addition pointed out a performance overhead be-
ing associated with the training and operation of recurrent
networks.
The Cerebellar Model Articulation Controller (CMAC)

neural network is another type of recurrent networks, who
has the capability of incremental learning. It avoids re-
training a neural network every time when a new intrusion
appears. This is the main reason that Cannady [41, 42]

applied CMAC to autonomously learn new attacks. The
author modified the traditional CMAC network by adding
a feedback from the environment. This feedback would be
any system status indicators, such as CPU load or available
memory. A modified least mean square learning algorithm
was adopted. A series of experiments demonstrated the
CMAC effectively learned new attacks in real time based
on the feedback from the protected system, and generalized
well to similar attack patterns.

4.1.2. Unsupervised Learning
Self-Organizing Maps and Adaptive Resonance Theory

are two typical unsupervised neural networks. Similar to
statistical clustering algorithms, they group objects by
similarity. They are suitable for intrusion detection tasks
in that normal behavior is densely populated around one
or two centers, while abnormal behavior and intrusions
appear in sparse regions of the pattern space outside of
normal clusters.

4.1.2.1. Self-Organizing Maps Self-organizing maps
(SOM), also known as Kohonen maps, are single-layer feed
forward networks where outputs are clustered in a low di-
mensional (usually 2D or 3D) grid. It preserves topological
relationships of input data according to their similarity.

SOMs are the most popular neural networks to be trained
for anomaly detection tasks. For example, Fox et al. first
employed SOMs to detect viruses in a multiuser machine in
1990 [103]. Later, other researchers [147, 270] used SOMs
to learn patterns of normal system activities. Nevertheless,
SOMs have been found in the misuse detection, too, where
a SOM functioned as a data pre-processor to cluster input
data. Other classification algorithms, such as feed forward
neural networks, were trained using the outputs from the
SOM [35, 43, 161].
Sometimes SOMs map data from different classes into

one neuron. Therefore, in order to solve the ambiguities
in these heterogeneous neurons, Sarasamma et al. [240]
suggested to calculate the probability of a record mapped
to a heterogeneous neuron being of a type of attack. A
confidence factor was defined to determine the type of
record that dominated the neuron.

These previous works are all single layer SOMs. Rhodes
et al. [237], after examining network packets carefully,
stated that every network protocol layer has a unique struc-
ture and function, so malicious activities aiming at a spe-
cific protocol should be unique too. It is unrealistic to build
a single SOM to tackle all these activities. Therefore, they
organized a multilayer SOM, each layer corresponding to
one protocol layer. Sarasamma et al. [240] drew a similar
conclusion that different subsets of features were good at
detecting certain attacks. Hence, they grouped the 41 fea-
tures of the KDD99 dataset into 3 subsets. A three-layer
SOM model was built, accepting one subset of features and
heterogeneous neurons from the previous SOM layer. Re-
sults showed that false positive rates were significantly re-

7

duced in hierarchical SOMs compared to single layer SOMs
on all test cases.

Lichodzijewski et al. employed a two-layer SOM to detect
anomaly user behavior [193] and anomaly network traffic
[192]. The first layer comprised 6 parallel SOMs, each map
clustering one feature. The SOM in the second layer com-
bined the results from SOMs in the first layer to provide
an integrated view. Kayacik et al. [162, 164, 165] extended
Lichodzijewski’s work by introducing the third SOM layer,
while keeping the first two layers unchanged. The SOM in
the third layer was intended to resolve the confusion caused
by heterogeneous neurons. In both Kayacik’s and Lichodzi-
jewski’s work, a Potential Function Clustering method was
used between the first and second layer. This clustering
algorithm significantly reduced the dimensions seen by neu-
rons in SOMs from the second layer. When comparing their
results with best supervised learning solutions, their meth-
ods have shown a similar detection rate but a higher FP
rate. The major reason, in their perspective, is the avail-
ability of suitable boosting algorithms for unsupervised
learning, which may be a direction for future research.

Zanero [283, 285] was another supporter who suggested
to consider payload of network packets in the analysis. He
proposed a multi-layer detection framework, where the first
layer used a SOM to cluster the payload, and compressed
it into a single feature. This compressed payload feature
was then passed on to the second layer as input, together
with other features in packet headers. Most classification
algorithms can be used in the second tier. Unfortunately,
the high dimensional (from 0 to 1460 bytes) payload data
greatly decreased the performance of the first layer. Zanero
later conceived the K-means+ [284] algorithm to avoid
calculating the distance between each neuron, thus greatly
improving the runtime efficiency of the algorithm.

Unlike other unsupervised approaches, SOMs are useful
to visualize the analysis. Girardin introduced a visual ap-
proach for analyzing network activities [111], which best
took advantage of topology-preserving and dimensionality-
reducing properties of SOMs. Network events are projected
onto a two dimensional grid of neurons, and then each neu-
ron is portrayed as a square within the grid. The foreground
color of the square indicates the weights of each neuron.
Thus similar network events have similar foreground color,
and are grouped together closely. The background color
indicates the quality of the mapping. The size of the square
identifies the number of events mapped to the unit. There-
fore, users can easily tell the rare and abnormal events from
the graph, which facilitates users to explore and analyze
anomaly events.
If we are using SOMs to visualize the structural fea-

tures of the data space, SOMs discussed in the previous
work would be inappropriate, because they contain small
numbers of neurons, which prohibits the emergence of in-
trinsic structural features in the data space on a map.
Emergent SOMs (ESOM), based on simple SOMs, contain
thousands to tens of thousands of neurons. The large num-
ber of neurons in ESOM is necessary in order to achieve

emergence, observe the overall structures and disregard el-
ementary ones. An ESOM with U-Matrix was employed in
[214, 215, 216], focusing on the detection of DoS attacks in
KDD99 data. Although their work showed very high accu-
racy (between 98.3% to 99.81%) and a low false alarm rate
(between 2.9% to 0.1%), the training procedure suffered
from a high computational overhead, especially when the
size of the training set was over 10,000.

4.1.2.2. Adaptive Resonance Theory (ART) The Adap-
tive Resonance Theory (ART) embraces a series of neural
network models that perform unsupervised or supervised
learning, pattern recognition, and prediction, since it has
been invented by Stephen Grossberg in 1976. Unsupervised
learning models include ART-1, ART-2, ART-3, and Fuzzy
ART. Various supervised ones are named with the suffix
“MAP”, such as ARTMAP, Fuzzy ARTMAP, and Gaussian
ARTMAP. Compared with SOMs who cluster data objects
based on the absolute distance, ARTs cluster objects based
on the relative similarity of input patterns to the weight
vector.

Amini et al. compared the performance of ART-1 (ac-
cepting binary inputs) and ART-2 (accepting continuous
inputs) on KDD99 data in [19]. They concluded that ART-
1 has a higher detection rate than ART-2, while ART-2 is
7 to 8 times faster than ART-1. This observation is consis-
tent with results in [197]. Later, Amini et al. in [20] further
conducted their research on self-generated network traffic.
This time they compared the performance of ARTs and
SOMs. The results showed that ART nets have better in-
trusion detection performance than SOMs on either offline
or online data.

Fuzzy ART nets combine fuzzy set theory and adaptive
resonance theory. This combination is faster and more sta-
ble than ART nets alone in responding to arbitrary input
sequences. Liao et al. [190] and Durgin et al. [83] are two
examples of using Fuzzy ART to detect anomalies. Liao
et al. deployed Fuzzy ART in an adaptive learning frame-
work which is suitable for dynamic changing environments.
Normal behavior changes are efficiently accommodated
while anomalous activities can still be identified. Durgin
et al. investigated in detail the capabilities of SOMs and
Fuzzy ARTs. Both SOMs and Fuzzy ARTs show promise
in detecting network abnormal behavior. The sensitivity of
Fuzzy ARTs seems to be much higher than that of SOMs.

4.1.3. Summary
In this section, we reviewed previous research contribu-

tions on artificial neural networks in intrusion detection.
Various supervised and unsupervised ANNs were employed
in misuse and anomaly detection tasks. All these research
works took advantage of ANNs’ ability to generalize from
limited, noisy, and incomplete data. Some researchers at-
tempted to address disadvantages of ANNs as well. For ex-
ample, [51, 218, 283, 288] tried to reduce the long training
time; [160, 237, 287] used the ensemble approach to solve

8

the retraining problem of ANNs when facing a new class
of data; for the black box nature of ANNs, [144] extracted
attack patterns from the trained ANNs in comprehensible
format of if-then rules.
To improve detection accuracy, the following practices

have been proven useful in ANNs:
– Temporal locality property. Studies [107, 108] have con-

firmed that the temporal locality property exists in nor-
mal as well as in intrusive behavior in the intrusion de-
tection field. In ANNs time can be represented either
explicitly or implicitly. [20] and [193] concluded that ex-
plicit representation of time does not accurately identify
intrusions. When it comes to implicitly represent time, re-
searchers either adopted neural networks with short-term
memory, such as recurrent nets, or mapped temporal pat-
terns to spatial patterns for networks without memory.
Most of the works chose sliding windows, which gather
n successive events and then form one input vector from
them (e.g., [35, 40, 144, 147, 165, 181, 192, 197]). Other
mechanisms include the leaky bucket algorithm [108],
layer-window statistical preprocessors [289], chaotic neu-
rons [281], and using the time difference between two
events [20]. All these results confirm that designing a
detection technique that capitalizes on the temporal lo-
cality characteristic of the data can contribute to better
results.

– Network structure. Intrusions are evolving constantly.
Sometimes attacks are aiming at a specific protocol, while
sometimes they are aiming at a specific operating system
or application. Therefore it would be unreasonable to
expect a single neural network to successfully characterize
all such disparate information. Previous research reminds
us that networks with ensemble or hierarchical structure
achieve better performance than single layer ones, no
matter whether they are supervised or unsupervised
([40, 160, 165, 185, 240, 287]).

– Datasets and features. Neural networks only recognize
whatever is fed to them in the form of inputs. Although
they have the ability of generalization, they are still
unable to recognize unseen patterns sometimes. One
cause of this difficulty is incomplete training sets. To
address this problem, randomly generated anomalous
inputs ([17, 109, 257]) are inserted into the training
set with the purpose of exposing the network to more
patterns, hence making the training sets more complete.
Selecting good feature sets is another way to improve
performance. [240] identified that different subsets of
features are good at detecting certain types of attacks.
[165] conducted a series of experiments on a hierarchical
SOM framework on KDD99 data. They found that 6
basic features are sufficient for recognizing a wide range of
DoS attacks, while 41 features are necessary to minimize
the FP rate. Among the 6 basic features, protocol and
service type appear to be the most significant.

4.2. Fuzzy Sets

The past decades have witnessed a rapid growth in the
number and variety of applications of fuzzy logic. Fuzzy
logic, dealing with the vague and imprecise, is appropri-
ate for intrusion detection for two major reasons. First,
the intrusion detection problem involves many numeric at-
tributes in collected audit data, and various derived statis-
tical measures. Building models directly on numeric data
causes high detection errors. For example, an intrusion that
deviates only slightly from a model may not be detected or
a small change in normal behavior may cause a false alarm.
Second, the security itself includes fuzziness, because the
boundary between the normal and anomaly is not well de-
fined. This section will spell out how fuzzy logic can be
utilized in intrusion detection models.

4.2.1. Fuzzy Misuse Detection
Fuzzy misuse detection uses fuzzy models, such as fuzzy

rules or fuzzy classifiers to detect various intrusive behavior.
When fuzzy logic was initially introduced to the intrusion
detection domain, it was integrated with expert systems.
Fuzzy rules substituted ordinary rules so as to map knowl-
edge represented in natural languages more accurately to
computer languages. Fuzzy rules were created by security
experts based on their domain knowledge. For example, the
Fuzzy Intrusion Recognition Engine (FIRE) proposed by
Dickerson et al. used fuzzy rules to detect malicious net-
work activities [80, 81]. Although the fuzzy sets and their
membership functions were decided by a fuzzy C-means
algorithm, hand-encoded rules were the main limitation of
their work.

Avoiding hand-coded fuzzy rules is the one main research
topic in fuzzy misuse detection. Commonly employed meth-
ods are generating rules based on the histogram of attribute
values [10, 11], or based on partition of overlapping areas
[10, 11, 184], or based on fuzzy implication tables [291], or
by fuzzy decision trees [194], or by association rules [84] or
by SVMs [279]. Due to the rapid development of computa-
tional intelligence, approaches with learning and adaptive
capabilities have been widely used to automatically con-
struct fuzzy rules. These approaches are artificial neural
networks, evolutionary computation, and artificial immune
systems. We will investigate them in detail in Section 4.6
on “Soft Computing”.
Another application of fuzzy logic is decision fusion,

which means that fuzzy logic fuses the outputs from differ-
ent models to present a final fuzzy decision. For instance,
Cho et al. trained multiple HMMs to detect normal behav-
ior sequences. The evaluations from HMMs were sent to
the fuzzy inference engine, which gave a fuzzy normal or
abnormal suggestion [56]. Similar fuzzy inference systems
were used to combine the decisions of multiple decision
trees [259], multiple neuro-fuzzy classifiers [261], and other
models [241].

9

4.2.2. Fuzzy Anomaly Detection
Fuzzy logic plays an important role in anomaly detection,

too. Current research interests are to build fuzzy normal
behavior profiles with the help of data mining.
Bridges et al. suggested to use fuzzy association rules

and fuzzy sequential rules to mine normal patterns from
audit data [36, 37]. Their work was an extension of the
fuzzy association rule algorithm proposed by Kuok et al.
[180] and the fuzzy sequential rule algorithm by Mannila
and Toivonen [208]. To detect anomalous behavior, fuzzy
association rules mined from new audit data were com-
pared with rules mined in the training phase. Hence, a
similarity evaluation function was developed to compare
two association rules [202, 203]. Florez et al. [94] later de-
scribed an algorithm for computing the similarity between
two fuzzy association rules based on prefix trees, so better
running time and accuracy were achieved. El-Semary et al.
compared the test data samples against fuzzy association
rules directly by a fuzzy inference engine [84].

Fuzzy logic also worked with another popular data min-
ing technique, outlier detection, on anomaly detection. Ac-
cording to the hypothesis of IDSs, malicious behavior is
naturally different from normal behavior. Hence, outliers
should be considered as abnormal behavior. Therefore, the
fuzzy C-Medoids algorithm [246] and the fuzzy C-Means
algorithm [52, 53, 54, 141] are two common clustering ap-
proaches to identify outliers. As all clustering techniques,
they are affected by the “curse of dimensionality”, thus
suffering performance degradation when confronted with
datasets of high dimensionality. Feature selection is a nec-
essary data pre-processing step. For example, Principal
Component Analysis [141, 246] and Rough Sets [52, 53, 54]
can be applied on datasets before being clustered.

4.2.3. Summary
Fuzzy logic, as a means of modeling the uncertainty of

natural language, constructs more abstract and flexible pat-
terns for intrusion detection, thus greatly increasing the ro-
bustness and adaptation ability of detection systems. Two
research directions are active in the fuzzy logic area. Algo-
rithms with learning and adaptive capabilities are investi-
gated on the issue of automatically designing fuzzy rules.
Popular methods include but not limited to: association
rules, decision trees, evolutionary computation, artificial
neural networks. In turn, fuzzy logic helps to enhance the
understandability and readability of some machine learning
algorithms, such as SVMs or HMMs. The use of fuzzy logic
smoothes the abrupt separation of normality and abnormal-
ity. From the research work reviewed in this section, and
the work will be mentioned later in the Soft Computing
section, the popularity of fuzzy logic clearly demonstrates
the successfulness of fuzzy logic in fulfill these two roles.
We believe that fuzzy logic will remain an active research
topic in the near future.

4.3. Evolutionary Computation

Evolutionary Computation (EC) in computer science, as
creative as the evolution in nature, is capable of addressing
real-world problems with great complexity. These problems
normally involve randomness, complex nonlinear dynamics,
and multimodal functions, which are difficult for traditional
algorithms to conquer [95]. In this section, we will review
the role of EC in the intrusion detection field. Some impor-
tant issues, such as evolutionary operators, niching, and
fitness functions will be discussed.
This survey focuses on Genetic Algorithms (GA) [148]

and Genetic Programming (GP) [179]. GA and GP differ
with respect to several implementation details, but con-
ceptually they are nearly identical. Generally speaking,
evolution in them can be described as a two-step iterative
process, consisting of random variation and selection [95],
as shown in Figure 6.

(Crossover/Mutation)
Reproduction

Replacement

Selection

Offspring

(parents)

Mating Pool
Initialization

Termination

Population

Fig. 6. The flow chart of a typical evolutionary algorithm

4.3.1. The Roles of EC in IDS
4.3.1.1. Optimization Some researchers are trying to ana-
lyze the problem of intrusion detection by using a multiple
fault diagnosis approach, which is analogous to the process
of human beings being diagnosed by a physician when they
are suffering from a disease. For a start, an events-attacks
matrix is defined, which is known as pre-learned domain
knowledge (analogous to knowledge possessed by a physi-
cian). The occurrence of one or more attacks is required to
be inferred from newly observed events (analogous to symp-
toms). Such a problem is reducible to a zero-one integer
problem, which is NP-Complete. [64] and [212] both em-
ployed GA as an optimization component, but [212] used
a standard GA, while [64] used a micro-GA in order to
reduce the time overhead normally associated with a GA.
Both works coded solutions in binary strings, where the
length of a string was the number of attacks, and 1’s or 0’s
in a genome indicated if an attack was present. The fitness
function in both works were biased to individuals who can
predict a maximum number of intrusion types (number
of 1’s in chromosomes), while avoiding to warn of attacks
that did not exists (unnecessary 1’s in chromosomes). Diaz-
Gomez et al. corrected the fitness definition used in [212]
after careful analysis [77, 78] and mathematical justifica-
tion [76], and further refined it in [79].

4.3.1.2. Automatic Model Structure Design ANNs and
clustering algorithms are two popular techniques to build

10

intrusion detection models. The problematic side of them
is that one has to decide an optimal network structure
for the former, and the number of clusters for the latter.
To remedy these drawbacks, evolutionary algorithms are
introduced for automatic design purpose.

[144] evolved an RBF neural network to classify network
traffic for the DARPA98 dataset. The GA was used to se-
lect an optimal feature set and to learn the structure of
RBF net, such as the type of basis function, the number of
hidden neurons, and the number of training epochs. Evolv-
ing Fuzzy Neural Network (EFuNN) is another example of
this kind. It implements a Mamdani-type fuzzy inference
system where all nodes are created during learning [47, 190].
In contrast to evolving networks with fixed topologies and
connections, Han et al. [133] proposed a Evolutionary Neu-
ral Network (ENN) algorithm to evolve an ANN which
detected anomaly system call sequences. A matrix-based
genotype representation was implemented, where the upper
right triangle was the connectivity information between
nodes, and the lower left triangle described the weights be-
tween nodes. Consequently, this network has no structural
restrictions, and is more flexible, as shown in Figure 7. [278]

(a) MLFF (b) RNN

(c) ENN

Fig. 7. Comparing structures of different artificial neural networks
[133].

presented a misuse detection model constructed by the un-
derstandable Neural Network Tree (NNTree). NNTree is a
modular neural network with the overall structure being
a decision tree, and each non-terminal node being an ex-
pert neural network. The GA recursively designed these
networks from the root node. The designing process was,
in fact, a multiple objective optimization problem, which
kept the partition ability of the networks high, and the size
of trees small. [50] investigated the possibility of evolving
neural networks by an Estimation of Distribution Algo-
rithm (EDA), a new branch of EC. A floating point coding
scheme was adopted to represent weights, thresholds and
flexible activation function parameters. The modeling and
sampling step in the EDA improves search efficiency, be-

cause sampling is guided by global information extracted
through modeling to explore promising areas.

The experiment results of the above works all confirmed
that automatically designed networks outperformed conven-
tional approaches in detection performance. [133] further
verified evolutionary approaches reduced the training time.

As for clustering algorithms, evolutionary algorithms
shorten the tedious and time-consuming process of deciding
appropriate cluster centers and number of clusters. Leno
et al. [186] first reported their work of combining unsuper-
vised niche clustering with fuzzy set theory for anomaly
detection and applied it to network intrusion detection.
Here “unsupervised” means that the number of clusters is
automatically determined by a GA. An individual, repre-
senting a candidate cluster, was determined by its center,
an n-dimensional vector with n being the dimension of the
data samples, and a robust measure of its scale (or disper-
sion) δ2. The scale was updated every generation based
on density of a hypothetical cluster. In [198, 200] by Lu
et al., a GA was applied to decide the number of clusters
based upon a Gaussian Mixture Model (GMM). This model
assumed that the entire data collection can be seen as a
mixture of several Gaussian distributions, each potentially
being a cluster. An entropy-based fitness function was de-
fined to measure how well the GMMs approximated the
real data distribution. Thereafter, a K-means clustering
algorithm was run. In contrast, [290] reversed the order of
the K-means and evolutionary approaches. K-means was
used to decide potential cluster centers, followed by the GA
refining cluster centers. The authors integrated a simulated
annealing algorithm as selection operator.

4.3.1.3. Classifiers There are two streams of applying evo-
lutionary algorithms as classifiers: classification rules and
transformation functions. A classification rule is the rule
with if-then clause, where a rule antecedent (IF part) con-
tains a conjunction of conditions on predicting attributes,
and the rule consequent (THEN part) contains the class
label. As depicted in Figure 8a, the task of EC is to search
for classification rules (represented as circles) who cover
the data points (denoted as “+”) of the unknown concept
(represented as shaded regions). In this sense, evolving clas-
sification rules is regarded as conception learning. Classifi-
cation can also be achieved by a transformation function,
which transforms data into a low dimensional space, i.e.
1D or 2D, such that a simple line can best separate data
in different classes (shown in Figure 8b).
A GA uses fixed length vectors to represent classifica-

tion rules. Antecedents and class label in if-then rules are
encoded as genes in a chromosome (shown in Figure 9a).
Either binary [159, 213, 222] or real-number [117, 188, 189,
233, 248] encoding schemes are conceived. A “don’t care”
symbol, ∗, is included [117, 159, 188, 189, 213, 222, 233,
248] as a wild card that allows any possible value in a gene,
thus improving the generality of rules. GP, on the other
hand, often uses trees illustrated in Figure 9b [199, 280],

11

(a) Classification Rules [149]

Low Dimensional Space

Transfer

High Dimensional Space

(b) Classification Transformation Functions

Fig. 8. Two streams of applying evolutionary algorithms as classifiers.

or decision trees [96, 97] to represent classification rules.
Compared with a GA which connects conditions in the
antecedent only by the AND operator, GP has richer ex-
pressive power as it allows more logic operators, such as
OR, NOT, etc. Further, if the logic operators in Figure 9b
are replaced by arithmetic operators, the tree then repre-
sents a transformation function [89]. Linearly structured
GP is another way to represent the transformation function
with a sequence of operators acting on operands (shown in
Figure 9c). A GA, in contrast, represents the transforma-
tion function in a linear vector containing coefficients or
weights of input attributes.

gene gene gene gene
1 2 n−1 n. . .

consequentantecedent

(a) GA Chromosome

OR

C3 IP>

<=

NOT

=

AND

0.8C1

C2 0.6

(b) Tree GP Chromosome

(c) Linear GP Chromosome [254]

Fig. 9. Chromosome structures of GA, Tree GP and Linear GP.

Research works that explored the evolution of classifiers
by GAs for intrusion detection have been summarized in
Table 3. Among them, [55] and [275] are two research works
on searching for transformation functions by GAs. The
function has the following format: C(χ) =

∑n
j=1(wj × χj),

where n is the number of attributes, wj is a weight [275]
or coefficient [55] of attribute χj . A threshold value or
a separation line is established. When C(χ) exceeds this
threshold value, input χ is flagged as malicious attacks [55]
or normal [275].

The rest works shown in Table 3 employed GA to evolve
classification rules. One difference between binary and mul-
tiple classification rules lies in representation. In binary
classification, since all rules have the same class label, the
“output” part can be left out of the encoding. Researchers

Table 3

Classifiers Evolved by GA

Type Research Works

Binary Classifiers

[55], [159], [188], [189], [213], [222],
[248], [274], [275]

Multi-classifiers
[32], [59], [114], [117], [233], [242], [243],
[244], [245]

in [32, 117, 159, 188, 189, 233, 248] all suggested to con-
sider niching in basic GAs when evolving classification rules.
Niching helps to cover all data samples with a minimum
set of accurate rules. Some sophisticated GAs were investi-
gated, too. [213] and [222] used REGAL to model normal
network traffic on IES and DARPA98 data. REGAL [110]
is a distributed GA system, designed for learning First
Order Logic concept descriptions from examples. Another
group in Australia reported initial attempts to extend XCS,
an evolutionary Learning Classifier System (LCS), to in-
trusion detection problems. The GA was responsible for
introducing new rules into the population, and its role had
been examined by experiments in [245]. The authors pro-
posed several modifications on XCS to improve detection
accuracy, such as mutation and deletion operator, and a
distance metric for unseen data in the testing phase [59].
They further presented an analysis and comparison of two
classifier systems (XCS and UCS), and other machine learn-
ing algorithms on intrusion detection [245]. Experiments
showed that XCS was significantly better than UCS, but
both XCS and UCS were competitive approaches for intru-
sion detection. For the overall framework, please refer to
[243].

Research on evolving classifiers by GP is summarized in
Table 4. Among these, Lu et al. [199], Yin et al. [280] and
Folino et al. [96, 97] evolved classification rules, while the
rest evolved transformation functions. Every contributions
has its own flavor in solving intrusion detection problems;
for example, Crosbie et al. [58] used Automatically Defined
Function to ensure type safety in tree-based GP; Folino
et al. evolved decision trees for multi-classification purposes;

12

Table 4
Classifiers Evolved by GP

Type Research Work

Binary Classifiers Tree-based GP [58], [199], [280]

LGP [8], [9], [131], [138], [182],
[183], [220], [252], [253],
[254]

Multi-classifiers Tree-based GP [89], [96], [97]

LGP [191]

Lu et al. seeded the initial population with patterns of
known attacks.
Crosbie [58] and Folino et al. [96, 97] both stressed the

cooperation among individuals. The former organized the
system by autonomous agents, each of which was a GP-
evolved program detecting intrusions from only one data
source. The latter deployed their system in a distributed
environment by using the island model. Each node was
an island and contained a GP-based learning component
enhanced with a boosting algorithm. Islands evolved inde-
pendently, but the best individuals were asynchronously
exchanged by a migration process, after a fixed number of
generations.

Abraham and his research team [8, 9, 131, 220] and Song
et al. [252, 253, 254] are two research groups working on
LGP and its application in intrusion detection. Abraham’s
group focused on investigating basic LGP and its varia-
tions, such as Multi-Expression Programming (MEP) [224]
and Gene Expression Programming (GEP) [93], to detect
network intrusion. Experiments, in comparing LGP, MEP,
GEP and other machine learning algorithms, showed that
LGP outperformed SVMs and ANNs in terms of detection
accuracy at the expense of time [219, 220]; MEP outper-
formed LGP for Normal, U2R and R2L classes and LGP
outperformed MEP for Probe and DoS classes [8, 9, 131].
Although LGP and MEP both outperformed GEP in all
classes, GEP still reached a classification accuracy greater
than 95% for all classes [9]. Song et al. implemented a page-
based LGP with a two-layer subset selection scheme to
address the binary intrusion detection classification prob-
lem. Page-based LGP meant that an individual was de-
scribed in terms of a number of pages, where each page
had the same number of instructions. Page size was dynam-
ically changed when the fitness reached a “plateau” (fitness
does not change for several generations). Since intrusion
detection benchmarks are highly skewed, they pointed out
that the definition of fitness should reflect the distribu-
tion of class types in the training set. Two dynamic fitness
schemes, dynamic weighted penalty and lexicographic fit-
ness, were introduced. The application of their algorithms
to other intrusion detection related research can be found
in [182, 183].
The above mentioned transformation functions evolved

by GPs were for binary classification. Therefore, Faraoun
et al. [89] and Lichodzijewski et al. [191] investigated their
applications in multi-category classification. Faraoun et al.
implemented multi-classification in two steps. In the first

step, a GP mapped input data to a new one-dimensional
space, and in the second step, another GP mapped the
output from the first step to class labels; Lichodzijewski
et al. proposed a bid-based approach for coevolving LGP
classifiers. This approach coevolved a population of learn-
ers that decomposed the instance space by way of their
aggregate bidding behavior.

Besides GA and GP, Wilson et al. [274] investigated the
possibility of evolving classifiers by Grammatical Evolution
(GE). GE utilized a separate genotypic and phenotypic
representation. The genotypic representation was translated
into the phenotypic form using a Context Free Grammar
(CFG), typically of a Backus-Naur Form (BNF) [225]. In
their work, an SQL selection statement in BNF form was
firstly designed; then a binary string in the genotype was
eventually translated into an SQL selection statement in the
phenotype. Such a phenotypic representation accelerates
fitness evaluation because a simple SQL query takes no
time. The authors achieved favorable results for classifying
both normal and abnormal traffic on the KDD99 dataset.

4.3.2. Niching and Evolutionary Operators
4.3.2.1. Niching Most EC applications have focused on
optimization problems, which means that individuals in
the population compete with others for a global optimum.
However, pattern recognition or concept learning is actu-
ally a multimodal problem in the sense that multiple rules
(see Figure 8a) or clusters ([186]) are required to cover
the unknown knowledge space (also known as “set covering”
problem). In order to locate and maintain multiple local
optima instead of a single global optimum, niching is in-
troduced. Niching strategies have been proven effective in
creating subpopulations which converge on local optima,
thus maintaining diversity of the population [102].

Within the context of intrusion detection, both sharing
and crowding are applied to encourage diversity. [163, 188,
189] employed fitness sharing, while [248] employed crowd-
ing and [186] employed deterministic crowding (DC). DC is
an improved crowding algorithm, which nearly eliminates
replacement errors in De Jong’s crowding. Consequently,
DC is effective to discover multiple local optima compared
to no more than 2 peaks in De Jong’s [206]. Unfortunately,
there is no experimental result available in [248], so we can-
not estimate the limitations of De Jong’s crowding in intru-
sion detection problems. Hamming distance [188, 189, 248]
or Euclidean distance [163] were used to measure the simi-
larity between two individuals in both niching schemes.

However, defining meaningful and accurate distance mea-
sures and selecting an appropriate niching radius are diffi-
cult. In addition, computational complexity is an issue for
these algorithms. The shared fitness evaluation requires,
at each generation, a number of steps proportional to M2,
with M being the cardinality of the population [110]. So,
Giordana el al. introduced a new selection operator in RE-
GAL, called Universal Suffrage, to achieve niching [110].
The individuals to be mated are not chosen directly from

13

the current population, but instead indirectly through the
selection of an equal number of data points. It is impor-
tant to notice that only individuals covering the same data
points compete, and the data points (stochastically) “vote”
for the best of them. In XCS, the niching mechanism was
demonstrated via reward sharing. Simply, an individual
shares received rewards with those who are similar to them
in some way [59].

[199] implemented niching neither via fitness sharing nor
via crowding, but via token competition [187]. The idea
is as follows: A token is allocated to each record in the
training dataset. If a rule matches a record, its token will
be seized by the rule. The priority of receiving the token is
determined by the strength of the rules. On the other hand,
the number of tokens an individual acquires also helps
to increase its fitness. In this way, the odds of two rules
matching the same data is decreased, hence the diversity
of the population is maintained.

4.3.2.2. Evolutionary Operators In EC, during each suc-
cessive generation, some individuals are selected with cer-
tain probabilities to go through crossover and mutation for
the generation of offspring. Table 5 summarizes commonly
used selection, crossover and mutation operators employed
in intrusion detection tasks.
Table 5

Evolutionary Operators Employed in Intrusion Detection Tasks

Operators Research Work

Selection Roulette wheel [59], [89], [159]

Tournament [64], [79], [138], [252]

Elitist [144], [117]

Rank [133], [274]

Crossover Two-point [59], [64], [89], [117], [159],
[199], [213], [222], [280]

One-point [32], [133], [186], [274], [278]

Uniform [144], [213], [222]

Arithmetical [144]

Homologous [138], [183], [182], [252],

[253], [254]

Mutation Bit-flip [59], [64], [144], [159], [186],
[213], [222], [274], [278]

Inorder mutation [233]

Gaussion [144]

One point [89], [199], [280]

Some special evolutionary operators were introduced to
satisfy the requirements of representation. For example,
page-based LGP algorithms [183, 182, 252, 253, 254] re-
stricted crossover to exchanging pages rather than instruc-
tions between individuals. Mutation operators took two
forms: in the first case the mutation operator selected two
instructions with uniform probability and performed an Ex-
OR on the first instruction with the second one; the second

mutation operator selected two instructions in the same
individual with uniform probability and then exchanged
their positions. Hansen et al. [138] proposed a homologous
crossover in LGP attempting to mimic natural evolution
more closely. With homologous crossover, the two evolved
programs were juxtaposed and the crossover was accom-
plished by exchanging sets of continuous instruction blocks
having the same length and the same position between the
two evolved programs.

Most researchers have confirmed the positive role muta-
tion played in the searching process. However, they held
different opinions about crossover in multimodal problems
whose population contains niches. A mating restriction
was considered when individuals of different niches were
crossed over. Recombining arbitrary pairs of individuals
from different niches may be conducive to the formation
of unfit or lethal offspring. For example, if crossover were
conducted on the class label part, which means rules in dif-
ferent classes exchange their class labels, it would cause a
normal data point to be anomalous or vice versa. [233] ap-
plied mutation, but not crossover, to produce offspring; [64]
only applied mutation and crossover to the condition-part
of rules; [186] introduced an additional restriction on the
deterministic crowding selection for restricting the mating
between members of different niches.
Except for these three operators, many other operators

were conceived for improving detection rate, maintaining
diversity or other purposes. Among them, seeding and
deletion are two emerging operators that are adopted by
many EC algorithms in intrusion detection applications.
– Seeding [59, 110]. As discussed earlier, evolving classifi-

cation rules can be regarded as a “set covering” problem.
If some instances are not yet covered, seeding operators
will dynamically generate new individuals to cover them.
Normally, this method is used to initialize the first pop-
ulation at the beginning of the searching.

– Deletion [59]. EC works with a limited population size.
When a newly generated individual is being inserted
into the population, but the maximum population size is
reached, some old individuals have to be removed from
the population. In traditional EC, where a global opti-
mum is targeted, the less fit individuals are preferably re-
placed. However, for multimodal problems, other criteria
in addition to fitness, such as niches or data distribution,
should be considered to avoid replacement errors. [59] ex-
tended the deletion operator of XCS by considering class
distribution, especially for highly skewed datasets. For
example, normal instances constitute approximately 75%
of total records in the KDD99 dataset. Therefore, rules
which cover normal data points will have a higher fitness
than others, which implies that rules for the normal class
have a much lower chance to be deleted compared to
rules for other classes. So integrating class distribution
into the deletion operator allows it to handle minority
classes.

– Adding and Dropping. These two operators are variations
of mutation. When evolving rules, dropping means re-

14

move a condition from the representation, thus resulting
in a generalized rule [199, 280]. On the contrary, adding
conditions results in a specialized rule. [133] employed
adding and dropping to add a new connection between
neurons, and delete the connection between neurons, re-
spectively.

4.3.3. Fitness Function
An appropriate fitness function is essential for EC as it

correlates closely with the algorithm’s goal, thus guiding
the search process. Intrusion detection systems are designed
to identify intrusions with accuracy. Therefore, accuracy
should be a major factor when yielding a fitness function.
In Table 6, we categorize the fitness function from research
work we surveyed. The categorization is based on three
terms: detection rate (DR), false positive rate (FPR) and
conciseness.

The research contributions in the first row are all devoted
to anomaly detection problems. Since no attack is presented
in the training phase, DR is not available. Their fitness
functions may vary in format, but they all look for models
which cover most of the normal data. In this example,
H(Ci) represents the entropy of data points who belong
to cluster Ci, and Hmax(Ci) is the theoretical maximum
entropy for cluster Ci.
Accuracy actually requires both the DR and FPR. Ig-

noring either of them will cause misclassification errors. A
good IDS should have a high DR and a low FPR. The first
example in the second row directly interprets this principle.
α stands for the number of correctly detected attacks, A
the number of total attacks, β the number of false posi-
tives, and B the total number of normal connections. As we
know, patterns are sometimes represented as if-then clause
in IDSs, so in the second example, the support-confidence
framework is borrowed from association rules to determine
the fitness of a rule. By changing weights w1 and w2, the
fitness measure can be used for either simply identifying
network intrusions or precisely classifying the types of in-
trusion [117]. The third example considers the absolute
difference between the prediction of EC (ϕp) and the actual
outcome (ϕ).
Conciseness is another interesting property that should

be considered. This is for two reasons: concise results are
easy to understand, and concise results avoid misclassifica-
tion errors. The second reason is less obvious. Conciseness
can be restated as the space a model, such as a rule, or a
cluster, uses to cover a dataset. If rule A and rule B have
the same data coverage, but rule A is more concise than B,
so A uses less space than B does when covering the same
dataset. Therefore the extra space of B is more prone to
cause misclassification errors. Apparently the first example
of this kind considers all three terms, where length corre-
lates with conciseness. The second example of this type
considers the number of counterexamples covered by a rule
(w), and the ratio between the number of bits equal to 1 in
the chromosome and the length of chromosome (z), which

is the conciseness of a rule. A is a user-tunable parameter.
The fitness function in [186] also preferred clusters with
small radius if they covered the same data points.

4.3.4. Summary
In this section, we reviewed the research in employing

evolutionary computation to solve intrusion detection prob-
lems. As is evident from the previous discussion, EC plays
various roles in this task, such as searching for an optimal
solution, automatic model design, and learning for classi-
fiers. In addition, experiments reasserted the effectiveness
and accuracy of EC. However, we also observed some chal-
lenges in EC, as listed below. Solving these challenges, to
some degree, will further improve the performance of EC-
based intrusion detection.
– No reasonable termination criterion. Most current works
simply set the termination criterion as a pre-specified
number of iterations, or a threshold of fitness. Such a
criterion may be helpful when searching for the global
optimum, but inappropriate for multiple local optima.
The experiment of [244] showed that it is necessary to
stop evolution in LCS using a stopping criterion other
than the maximum number of generations. Therefore,
more research work is required to investigate a reasonable
termination criterion.

– Niching. Sharing and crowding are two commonly used
niching schemes, with the purpose of maintaining the
diversity of a population. In the context of intrusion
detection, some researchers advocate that fitness shar-
ing is more suitable, such as [189], while others support
crowding. Hence, the question arises: are they equally
useful for intrusion detection? If not, which one is better?
Learning intrusion behavior is equivalent to conception
learning, which is always looking for multiple solutions.
Although niching is capable of discovering and maintain-
ing multiple local optima, there is no guarantee that a
complete set of solutions will be returned.

– Distributed EC models. Training sets in intrusion detec-
tion are normally generated from network traffic dumps
and event logs, which have large volume. This makes
evaluating the validity of a candidate solution in EC even
more expensive and time consuming. In contrast to mono-
lithic architectures, distributed models [97, 110, 144]
have the advantage of assigning each node a portion of
the data, hence they put less burden on fitness evalua-
tion. In addition, islands are trained simultaneously and
independently, so they can be added to and removed
from the system dynamically. However, there are many is-
sues deserving careful investigation, such as evolutionary
models or communication mechanisms in a distributed
environment.

– Unbalanced data distribution. One important feature of
intrusion detection benchmarks is their high skewness.
Take the KDD99-10% dataset as an example: there are
391,458 instances in the DoS class while only 52 instances
are in the U2R class. Both [59] and [252] pointed out in-

15

Table 6
Fitness Summary

Factors
Examples References

DR FPR Conciseness

×
√

×
H(Ci)

Hmax(Ci)
[133], [186], [200], [198]

√ √
×

α

A
−
β

B
[55], [79], [89], [159], [183], [233], [248], [275], [290]

w1 × support+ w2 × confidence [32], [117], [199], [274], [280]

1− |ϕp − ϕ| [27], [58], [131], [188], [189], [252]
√ √ √

w1 × sensitivity + w2 × specificity + w3 × length [114]

(1 +Az)× e−w [64], [213], [222]

dividuals which had better performance on frequently oc-
curring connection types would be more likely to survive,
even if they performed worse than competing individu-
als on the less frequent types. Therefore, when designing
an intrusion detection system based on EC approaches,
one should consider how to improve the accuracy on
relatively rare types of intrusion without compromising
performance on the more frequent types.

4.4. Artificial Immune Systems

The human immune system (HIS) has successfully pro-
tected our bodies against attacks from various harmful
pathogens, such as bacteria, viruses, and parasites. It dis-
tinguishes pathogens from self tissues, and further elimi-
nates these pathogens. This provides a rich source of in-
spiration for computer security systems, especially intru-
sion detection systems. According to [167, 251], features
gleaned from the HIS satisfy the requirements of designing
a competent IDS [146, 167]. Hence, applying theoretical
immunology and observed immune functions, its principles,
and its models to IDS has gradually developed into a new
research field, called artificial immune system (AIS).

AIS based intrusion detection systems perform anomaly
detection. Instead of building models for the normal, they
generate non-self (anomalous) patterns by given normal
data only, as Figure 10 illustrated. Any matching to non-
self patterns will be labeled as an anomaly.

Fig. 10. The goal of AIS-based IDSs is to generate all patterns,
denoted as black circles, which match none of the normal data. The

shaded region represents a space containing only normal data [146].

In this section, we will review research progress on im-
mune system inspired intrusion detection. Although review
work for AISs [22, 61, 67, 98, 153] and their application to

the intrusion detection domain [16, 170] exist, our review is
different in that it focuses on two perspectives: tracking the
framework development of AIS based IDSs and investigat-
ing key elements shown in Figure 11 when engineering an
AIS-based intrusion detection system [67]. In recent years,
research on AIS is extended to the study of innate immune
systems, in particular to the danger theory proposed by
Matzinger [209, 210]. Hence, the last part of this section
will present intrusion detection motivated by danger theory.

Affinity Measures

Immune Algorithms

Representation

AIS

Application Domain

Solution

Fig. 11. The framework to engineer an AIS. Representation creates

abstract models of immune cells and molecules; affinity measures
quantify the interactions among these elements; algorithms govern
the dynamics of the AIS [67].

4.4.1. A Brief Overview of Human Immune System
Before we start the discussion of AIS models, a brief

overview of the HIS will be necessary. A more detailed in-
troduction of the HIS can be found elsewhere, see [68]. Our
human immune system has a multi-layered protection ar-
chitecture, including physical barriers, physiologic barriers,
an innate immune system and an adaptive immune system.
Compared to the first three layers, the adaptive immune
system is capable of adaptively recognizing specific types
of pathogens, and memorizing them for accelerated future
responses [146]. It is the main inspiration for AISs.
The adaptive immune system is a complex of a great

variety of molecules, cells, and organs spread all over the
body, rather than a central control organ. Among its cells,
two lymphocyte types, T cells and B cells, cooperate to
distinguish self from non-self (known as antigens). T cells

16

recognize antigens with the help of major histocompatibility
complex (MHC) molecules. Antigen presenting cells (APC)
ingest and fragment antigens to peptides. MHC molecules
transport these peptides to the surface of APCs. Receptors
of T cells will bind with these peptide-MHC combinations,
thus recognizing antigens. On the contrary, the receptors of
B cells directly bind to antigens. The bindings actually are
chemical bonds between receptors and epitopes/peptides.
The more complementary the structure and the charge
between receptors and epitopes/peptides are, the more
likely the binding will occur. The strength of the bond is
termed “affinity”.

T cells and B cells are developed and matured within the
thymus and bone marrow tissues, respectively. To avoid
autoimmunity, T cells and B cells must pass negative se-
lection stage, where lymphocytes who match self cells are
killed. Prior to negative selection, T cells undergo positive
selection. This is because in order to bind with the peptide-
MHC combinations, they must recognize self MHC first. So
the positive selection will eliminate T-cells with weak bonds
to self MHC. T cells and B cells which survive the nega-
tive selection become mature, and enter the blood stream
to perform the detection task. These mature lymphocytes
have never encountered antigens, so they are naive.
Naive T cells and B cells can still possibly autoreact

with self cells, because some peripheral self proteins are
never presented during the negative selection. To prevent
self attack, naive cells need two signals in order to be
activated: one occurs when they bind to antigens, and the
other is from other sources, as a “confirmation”. Naive T
helper cells receive the second signal from innate system
cells. In the event that they are activated, T cells begin to
clone. Some of the clones will send out signals to stimulate
macrophages or cytotoxic T-cells to kill antigens, or send
out signals to activate B cells. Others will form memory
T cells. The activated B-cells migrate to a lymph node.
In the lymph node, a B cell will clone itself. Meanwhile,
somatic hypermutation is triggered, whose rate is 10 times
higher than that of the germ line mutation, and is inversely
proportional to the affinity. Mutation changes the receptor
structures of offspring, hence offspring have to bind to
pathogenic epitopes captured within the lymph nodes. If
they do not bind they will simply die after a short time. If
they succeed in binding, they will leave the lymph node and
differentiate into plasma or memory B-cells. This process is
called affinity maturation. Note clonal selection affects both
T cells and B cells, while somatic mutation has only been
observed in B cells. As we can see, by repeating selection
and mutation, high affinity B cells will be produced, and
mutated B cells adapt to dynamically changing antigens,
like viruses.

The immune response caused by activated lymphocytes
is called primary response. This primary response may take
several weeks to eliminate pathogens. Memory cells, on
the other hand, result in quick reaction when encountering
pathogens that they have seen before, or that are similar
to previously seen pathogens. This process is known as

secondary response, which may take only several days to
eliminate the pathogens.
In summary, the HIS is a distributed, self-organizing

and lightweight defense system for the body [167]. These
remarkable features fulfill and benefit the design goals of
an intrusion detection system, thus resulting in a scalable
and robust system.

4.4.2. Artificial Immune System Models for Intrusion
Detection

The HIS is sophisticated, hence researchers may have
different visions for emulating it computationally. In this
section, we will review the development of AIS models for
solving intrusion detection problems.

4.4.2.1. A self-non-self discrimination AIS model The
first AIS model suggested by Forrest et al. was employed
in a change-detection algorithm to detect alterations in
files [101] and system call sequences [100]. This model
simulated the self-non-self discrimination principle of the
HISs, as illustrated in Figure 12. Negative selection was
the core of this model, by which invalid detectors were
eliminated when they matched self data. Although not
many immune features were employed, it reflected some
initial steps toward a greater intellectual vision on robust
and distributed protection systems for computers [99].

No

Yes

Detector Set
(R)

Reject

Match

(S)
Self Strings

Generate Random

(R’)Strings

(a) Censoring

Yes

No

Nonself Detected

(R)

Detector Collection

Protected Strings
Match

(S’)

(b) Detecting

Fig. 12. The self-non-self discrimination model. A valid detector set

will be generated, and then monitor protected strings [101].

4.4.2.2. An AIS model with lifecycle Hofmeyr and Forrest
later extended the above prototype with more components
and ideas from the HISs. The new AIS model (shown in
Figure 13) considered the lifecycle of a lymphocyte: imma-
ture, mature but naive, activated, memory, and death. The
finite detectors’ lifetime, plus costimulation, distributed
tolerance and dynamic detectors result in eliminating au-
toreactive detectors, adapting to changing self sets, and im-
proving detection rates through signature-based detection.
As an application of this model, a system called LISYS
(Lightweight Immune SYStem) was developed to detect
intrusions on a distributed environment. Williams et al.
employed this model to detect computer viruses [139] and
network intrusion [273], but extended it with an affinity
maturation step to optimize the coverage of the non-self
space of antibodies [140, 273].

17

Death Naive, mature

Immature

Memory Detector Activated

Random
 Regeneration

No activation in finite period

Not costimulated

Match

Match

Costimulated

No matches during
tolerization period

Exceed activation
threshold

Start

Fig. 13. The lifecycle of a detector. A set of detectors are generated

randomly as immature detectors. An immature detector that matches
none of normal data during its tolerization period becomes mature;

otherwise it dies. When a mature detector matches sufficient input

data, this detector will be activated. Alternatively, a mature detector
that fails to become activated eventually dies. Within a fixed period of

time, if an activated detectors receive no co-stimulation, e.g. responses

from system security officers, it will die too; otherwise it becomes a
memory detector [112].

4.4.2.3. An evolutionary AIS model Kim and Bentley
proposed an AIS model [167] based on three evolutionary
stages: gene library evolution, negative selection and clonal
selection, shown in Figure 14. The gene library stores po-
tentially effective genes. Immature detectors are created
by selecting useful genes and rearranging them, rather
than generated randomly. Genes in successful detectors are
added to the library, while those in failed detectors are
deleted. In a sense, the library evolves; the negative selec-
tion removes false immature detectors by presenting self
without any global information about self; the clonal se-
lection detects various intrusions with a limited number of
detectors, generates memory detectors, and drives the gene
library evolution. Hofmeyr’s lifecycle model was adopted
in their model.

4.4.2.4. A multi-level AIS model T cells and B cells are
two primary but complex immunological elements in the
HIS. Dasgupta et al. proposed a multilevel immune learning
algorithm (see Figure 15), focusing on their functions and
interactions [63]. This model considers detecting intrusion
and issuing alarms in a multi-level manner. T-cells recognize
the peptides extracted from foreign proteins, while B-cells
recognize epitopes on the surface of antigens. Therefore,
in their computational model, T-detectors (analogous to
T cells) performed a low-level continuous bitwise match,
while the B-detectors (analogous to B cells) performed a
high-level match at non-contiguous positions of strings. To
prevent the system from raising false alarms, T-suppression
detectors (analogous as T-suppression cells) are introduced,
which decide the activation of T-detectors. Activated T-
detectors will further provide a signal to help activate B-
detectors. This model further simulated negative selection,
clonal selection and somatic hypermutation of mature T
cells and B cells.

Profiles

Self
Network

Trafffic

Automated

Profiler

Communicator

Gene Library

Gene Expression

Immature
Detectors

Negative

Selection
traffic from
Network

the router

secondary IDSs

detectors
Cloned

from

Mature

Detectors

Detectors

Memory

Mature&

Secondary IDS

Detectors

Memory

Mature&

Secondary IDS

Detectors

Memory

Mature&

Secondary IDS

Clonal
Selection

Gene

Library

Evolution

Primary IDS

Fig. 14. Conceptual architecture of Kim and Bentley’s AIS Model.

The central primary IDS generates valid detectors from gene library,
and transfers unique detector subsets to distributed secondary IDSs.
Secondary IDSs execute detection task, as well as proliferate successful

detectors [167].

4.4.2.5. Artificial Immune Network Model Artificial Im-
mune Networks (AIN) are based on the immune network
theory proposed by Jerne [150]. This theory hypothesizes
the immune system maintains an idiotypic network of in-
terconnected B cells for antigen recognition. These B cells
stimulate or suppress each other to keep the stabilization of
the network. In AIN, antigens are randomly selected from
the training set and presented to B cells. The stimulation
effects between B-cells and antigens (binding) are calcu-
lated. Meanwhile, the stimulation and suppression effects
between B cells are also calculated. B-cells will be selected
to clone and mutate based on the total interaction effects.
Useless B cells are removed from the network, while new
B cells are created randomly and incorporated into the
network, and links among all B cells are reorganized. A
network is returned for detection when the stopping cri-
terion is met. Based on Jerne’s work, many AIN models
were developed [105], as shown in Figure 16. AINs have
been proposed for problem solving in areas such as data
analysis, pattern recognition, autonomous navigation and
function optimization.

4.4.2.6. Other AIS models Millions of lymphocytes cir-
culate in the blood stream and lymph nodes performing
the role of immune surveillance and response. Therefore,
Dasgupta [60] and Hamer [139] both proposed a model for
mapping the mobility of cells into an AIS by mobile agents.
Lymphocytes, antibodies and other cells are mapped into
agents roaming around a protected system to perform sens-
ing, recognizing, deleting and cleaning jobs. Luther et al.
[205] presented a cooperative AIS framework in a P2P envi-
ronment. Different AIS agents collaborate by sharing their
detection results and status. Twycross et al. [266] incorpo-

18

Set (R1)

Set (R2)

Set (R3)

No

Yes

Antigen
Selection

Signal

Cells (APCs)
Ts

Suppression

Th Activation

Th Recognition

Specific

B Clones

Selection

Negative

Secondary
Response Response

Yes

Yes

No

No

Recognition Phase

Initialization Phase

Response Phase

Negative Selection
Low−level

Negative Selection

Negative Selection
High−level

Sample Set
(S0) Input

B Cloning and Mutation

Positive
Selection

Memory B Cells

AND

Evolutionary Phase

AND

Th Cloning,

similar to B

Level Match
Th Low

Yes

No
B High

Level Match

Th Detection

Ts Detection

B Detection

AND

B Activation

Plasma Cells

Primary

Antigen−Presenting

B Recognition

Fig. 15. A multi-level AIS model proposed by Dasgupta et al. [63].

Ferelson
Farmer Varela

Jerne

aiNetHunt&CookeOther Models

Ishiguro AISEC

Von Zuben

CLARINET

Reactive IN

AINE

RLAIS

SSAISFUZZY AIS

opt−aiNet

IPD aiNetHierarchy
aiNet

Michelan &

TECNO−STREAMS

FractalIN

Meta−Stable IN

Fig. 16. Genealogical tree of AIN models: each model is a modification

or is based on its parent [105].

rated ideas from innate immunity into artificial immune
systems (AISs) and presented an libtissue framework.

4.4.3. Representation Scheme and Affinity Measures
The core of the HIS is self and non-self discrimination

performed by lymphocytes. To engineer such a problem in
computational settings, appropriately representing lympho-
cytes and deciding the matching rules are key steps.
Antibodies are generated by random combinations of a

set of gene segments. Therefore a natural way to represent
detectors is to encode them as gene sequences, comparable
to chromosomes in genetic algorithms. Each gene represents
an attribute in the input data. Normally, a detector is
interpreted as an if-then rule, such as Figure 17 shown. The
affinity, when mapped into the intrusion detection domain,
means the similarity between detectors and data.
Binary strings are the most commonly adopted coding

schemes. There are two ways to represent detectors in
binary strings. The difference lies in how to determine the
number of nucleotides. Suppose the number of nucleotides
in a gene is denoted as Nn, and the number values of an
attribute is denoted as Na. Nn can either equal to Na [172,

Fig. 17. Detector genotype and phenotype [167].

167] or be the minimum integer which satisfies 2Nn >=
Na [22, 101, 112, 139, 146, 273]. The first representation
allows a single attribute of each detector to have more than
one value, but requires more space. Affinity measures in
binary strings are r-contiguous bits matching (rcb) [101],
r-chunks matching [28], landscape-affinity matching [139],
Hamming distance and its variations. Compared to perfect
matching, these partial matchings provide generalization
for a learning algorithm. Homer compared rcb, landscape-
affinity matching, Hamming distance and its variations on
a randomly generated dataset [139]. The results showed
that the Rogers and Tanimoto (R&T), a variation of the
Hamming distance, produced the best performance.
González [120] further compared R&T with r-chunks,

rcb and Hamming distance on two real-valued datasets.
Although r-chunks outperformed others, it still showed
a very high false positive rate. This can be explained by
the intrinsic meaning of difference or similarity in numeric
data. Affinity measures suitable for binary strings do not
correctly reflect the distance in numeric meanings.

19

Therefore, two real-valued representations were suggested
by Dasgupta’s research group to encode numeric informa-
tion. In the first coding scheme, a gene in a detector has
two nucleotides: one saves the lower bound value of an
attribute, and the other one saves the upper bound [62].
Hence, a chromosome actually defines a hypercube. In the
second coding scheme, a detector has n+1 genes, where
the first n genes represent the center of an n-dimensional
hypersphere, and the last gene represents the radius [121].
Major matching rules used in real-valued representation in-
clude: Euclidean distance, generalized distances of different
norms in Euclidean space (including special cases: Man-
hattan distance (1-norm), Euclidean distance (2-norm),
λ-norm distance for any λ, and infinity norm distance),
interval-based matching, and other distance metrics [158].
Representations combining the two approaches were

adopted, too [136]. Numeric attributes are encoded in real-
valued format, and category attributes are encoded in
strings. Matching rules were accordingly applied.

4.4.4. Negative Selection Algorithms
The negative selection (NS) algorithm simulates the

process of selecting nonautoreactive lymphocytes. Conse-
quently, given a set of normal data, it will generate a set of
detectors which match none of these normal data samples.
These detectors are then applied to classify new (unseen)
data as self (normal) or non-self (abnormal). In this section,
various NS algorithms will be summarized; then some key
issues, such as detector generation, controlling the FP rate
and FN rate, and coverage estimation will be discussed.

4.4.4.1. Development of Negative Selection Algorithms
The negative selection algorithm was firstly suggested by
Forrest et al., already shown in Figure 12. This algorithm
started with a population of randomly generated detectors.
These potential detectors, analogous to immature lympho-
cytes, were exposed to normal data. Those which matched
normal data were removed from the population immedi-
ately and replaced by new detectors. Detectors survived
this selection process were used in the detection phase
(shown in 12b). In this model, self data and detectors were
encoded as binary string, and rcb matching rules decided
the affinity.

Since the empirical study [120] supported the advantages
of real-valued representations on numeric data, Dasgupta
and his group extended the initial negative selection algo-
rithm to a series of real-valued NS algorithms. Figure 18
lists NS algorithms proposed by that group and by other
researchers. Dasgupta et al. hypothesized that each self
sample and its vicinity is normal, so they considered a vari-
ability range (called vr) as the radius for a normal point.
Obviously, representing normal data points by a hyper-
sphere achieved generalization for unseen data. An example
showing how a self region might be covered by circles in
2-dimension is given in Figure 19a.

Self/Nonself: Binary String

Forrest

Real−valued

Nonself: HyperspheresNonself: Hypercubes

Self: Hyperspheres

Multi−level

Fuzzy Detector

Nonself: Fuzzy sets

Ostaszewski

Nonself: Hypercubes

Self: Hypercubes
Shapiro

Nonself: Hyper−ellipsoids

Multi−shape

Nonself: Various

Self: HyperspheresSelf: Hyperspheres

v−Vector

Nonself: Hyperspheres

Nonself: Hyperspheres

Boundary−aware

Fig. 18. Genealogical tree of real-valued NS algorithms: each model is

a modification or is based on its parent. Dark rectangulars denote re-
search work by Dasgupta groups, and white ones by other researchers.

Features of these NS algorithms can be summarized as
follows:
– Multi-level: By changing the parameter vr of self hy-
persphere, a set of detectors with hierarchical levels of
deviation were generated. Such a hierarchical detector
collection characterized a noncrisp description for the
non-self space [62]. A variation of this algorithm inte-
grated fuzzy systems to produce fuzzy detectors [123].

– Real-valued: Instead of inefficiently throwing away detec-
tors who match self samples, this algorithm gave these
detectors a chance to move away from the self set during
a period of adaptation. Detectors would eventually die
if they still matched self sets within a given time frame.
Meanwhile, detectors moved apart from each other in or-
der to minimize the overlap in the non-self space [119]. In
the end, this algorithm generated a set of constant-sized
(because of constant radius) hypersphere detectors cov-
ering non-self space, as demonstrated in Figure 19a for a
2-dimensional space. Shapiro et al. expressed detectors
by hyper-ellipsoids instead of hyperspheres [247].

– v-Vector: Clearly in real-valued NS algorithms, large
numbers of constant-sized detectors are needed to cover
the large area of non-self space, while no detectors may
fit in the small area of non-self space, especially near the
boundary between self and non-self. Hence a variable
radius was suggested in the v-Vector algorithm [154, 155].
The core idea of this algorithm is illustrated in Figure
19b in a 2-dimensional space.

– Boundary-aware: Previous algorithms took each self sam-
ple and its vicinity as a self region, but deciding vicinity
is difficult, especially for self samples that are close to
the boundary between self and non-self. This algorithm
aims to solve the “boundary dilemma” by considering
the distribution of self samples.

– Multi-shape: Different geometric shapes, such as hyper-
rectangles [62, 123], hyper-spheres [119, 154, 155] and
hyper-ellipses [247], were used for covering the non-self
space. This algorithm thus incorporated these multiple
hyper-shape detectors together [24, 25]. Detectors with
suitable size and shape were generated according to the
space to be covered. As an application, this algorithm
was used to detect intrusions in Ad-Hoc networks [26].

– Ostaszewski: Ostaszewski et al. argued that detectors
generated by the multi-level NS algorithm cannot com-
pletely cover the non-self space, due to the shape conflict

20

between the structures used for self (hypersphere) and
non-self (hypercubes). Hence, in their algorithm, both
self and non-self patterns were hypercubes. Self patterns,
instead of self data, were used in the NS algorithm. The
conversion of large self data space into comparatively
small schemata space was effective, and the conversion
compressed the number of inputs of the NS algorithm. A
similar conversion was also suggested by Hang and Dai
[135, 137].

(a) Constant-sized detectors (b) Variable-sized detectors

Fig. 19. The main concept of v-Vector. The dark area represents self

region. The light gray circles are the possible detectors covering the

non-self region [155].

New NS algorithms are continuously being published.
For example, a NS algorithm, enhanced by state graphs
[204], is able to locate all occurrences of multi-patterns in
an input string by just one scan operation; a feedback NS
algorithm was proposed to solve the anomaly detection
problem [286].
However, concerns were raised recently on the applica-

bility of NS Algorithms. Garrett [106] concluded that NS
algorithms are distinct, and are suitable for certain applica-
tion only. Freitas et al. [104] have criticized the use of NS
algorithms in classification. However, NS algorithms were
proven useful in generating non-self data, which could be
mixed with self data to train classifiers. For details, refer
to [121, 137]. Stibor et al. pointed out that a real-valued
NS algorithm, defined over the hamming shape-space, is
not well suited for real-world anomaly detection problems
[255, 256]. To tackle these issues, Ji et al. [157] clarified
some confusions that may have mislead the applicability
of negative selection algorithms.

4.4.4.2. Detector Generation The typical way of gener-
ating detectors in NS algorithms is random or exhaustive,
as described in the model (Figure 12) originally proposed
by Forrest et al., later being frequently adopted in other
research work, e.g. [63, 118, 119, 146, 152, 155].
Instead of inefficiently throwing away detectors who

match self samples, Ayara et al. [23] and González et al.
[119] both decided to give these detectors a chance to move
away from the self set in a period of time before eliminating
them. Ayara et al. further compared their algorithm (NS-
Mutation) with exhaustive, linear [75], greedy [75], binary
template [272] detector generating algorithms in terms of
time and space complexities. The results can be found in

[23]. They concluded that though NSMutation was more
or else an exhaustive algorithm, it eliminated redundancy
and provided tunable parameters that was able to induce
different performance.
Recent trends are applying evolutionary algorithms to

evolve detectors to cover the non-self space, since a simi-
lar evolution process was observed in antibodies. The evo-
lutionary negative selection algorithm (ENSA) is shown
in Figure 20, where a negative selection algorithm is em-
bedded in a standard evolutionary process as an operator.
Sometimes the NS affects individuals’ fitness, and hence
results in generating more qualified detectors. Sometimes
it is the only way to evaluate fitness. Detectors who pass
through the negative selection will either be removed from
or stay in the population. Removed ones are replaced by
newly generated detectors.

Initialize

FinishStop?

Negative Selection

Evaluation

Selection

Next Generation Detector Set

Crossover/Mutation

Yes

No

Self Set

Fig. 20. Generating Detectors by Evolutionary Algorithms.

Kim et al. [168] introduced niching to the ENSA so
as to maintain diversity. Diversity is necessary for ENSA
because a set of solutions (detectors) collectively solves
the problem (covering non-self space). Niching has been
proved to be an effective way to solve multimodal problems
[102, 206]. Kim implemented niching in the way similar to
the token competition. A self sample and several detectors
were randomly selected. Only the detector which showed
least similarity with the self sample had the chance of
increasing its fitness.
Dasgupta’s group claimed the detector generation was

not only a multimodal optimization problem, but also a
multiobjective problem [62]. Hence, they used sequential
niching to achieve multimodal, and defined three reasonable
criteria to evaluate a detector: a good detector must not
cover self space; it should be as general as possible; and
it has minimum overlap with the rest of the detectors.
Therefore, the fitness function was defined as:

f (x) = volume (x)

− (C × num_elements (x) + overlapped_volume (x))
(1)

where volume(x) is the space occupied by detector x;
num_elements(x) is the number of self samples matched

21

by x; C is the coefficient. It specifies the penalty x suffers
if it covers normal samples; overlapped_volume(x) is the
space x overlaps with other detectors. Obviously, the first
part is the reward, while the second part is the penalty.
This multi-objective multimodal ENSA was applied in their
multi-level NS [62], fuzzy NS [123] and multi-shape NS
algorithms [24, 25]. Ostaszewski et al. also used this fit-
ness definition in their work. The multi-shape NS used a
structure-GA while the rest used standard GAs.

With the development of EC, ENSA is gradually strength-
ened by new evolutionary features. González and Cannady
[124] implemented a self-adaptive ENSA, where the mu-
tation step size was adjustable in a Gaussian mutation
operator. Their method avoided trial and error when deter-
mining the values of tunable parameters in NSMutation;
Ostaszewski et al. [226, 227, 228] employed co-evolution in
their ENSA. A competitive co-evolutionary model helped
detectors to discover overlooked regions. The anomaly
dataset and the detector set took their turn as predators
and preys. Detectors were trying to beat down anomaly
data points by covering them. The fitness of data points
not covered by any detector were increased, thus resulting
in a high possibility of these points to be presented to de-
tectors again. Haag et al. [132] employed a multi-objective
evolutionary algorithm to measure the tradeoff among de-
tectors with regard to two independent objectives: best
classification fitness and optimal hyper-volume size.

4.4.4.3. Controlling False Positive and False Negative Er-
rors Inaccurate boundaries between self and non-self space
(see Figure 21a), and incomplete non-self patterns (see Fig-
ure 21b) are two main causes of false positive and false
negative errors in AISs.

(a) Inaccurate Boundaries

(b) Incomplete Non-self Patterns

Fig. 21. Reasons for FPR and FNR in AISs [146].

Self samples in training sets are never complete. As a
result, some autoreactive detectors cannot be eliminated
during the negative selection. These detectors fail to recog-
nize unseen normal data, thus causing false positives, as
shown in Figure 21a. To avoid false positive errors, Hofmeyr
[146] introduced the activation threshold (τ), sensitivity
level (δ) and costimulation. Instead of signaling an alarm
every time a match happens, a detector has to wait until
it is matched at least τ times within a limited time period.
However, if attacks are launched from different sources, a
single detector cannot be matched repeatedly. Therefore,
δ is intended to consider the matches of all detectors in a
host. An alarm will be triggered when the contributions
of multiple detectors exceeds δ within a limited time pe-
riod. Costimulation requires a confirmation from a human
operator whenever an activated detector raises an alarm.
Giving generality to self samples is another way to ad-

dress incomplete self samples problem. As previously dis-
cussed, Dasgupta’s group used a hyper-sphere area around
self samples in the NS algorithm. Although their methods
successfully avoid overfitting, it unfortunately produces
an over-generalization problem. Over-generalization will
cause false negative errors as shown in Figure 21a. There-
fore, Ji et al. proposed a boundary-aware algorithm [151];
Ostaszewski et al. presented the self samples by variable-
sized hyper-rectangles; Hang et al. [135, 137] employed a
co-evolutionary algorithm to evolve self patterns.

Incomplete non-self patterns in AISs are mainly caused
by holes, which are the undetectable negative space (shown
in 21b). They are desirable to the extent that they pre-
vent false positives if unseen self samples are falling into
them. They are undesirable to the extent that they lead
to false negatives if non-self samples are falling into them.
Balthrop et al [28] and Esponda et al. [86, 87] pointed out
that matching rules are one reason of inducing holes. For
example, the r-contiguous bit matching rule induces either
length-limited holes or crossover holes, while the r-chunks
matching rule only induces crossover holes. Their analysis is
consistent with the D’haeseleer’s suggestion: using different
matching rules for different detectors can reduce the overall
number of holes [75]. Alternatively, using different represen-
tations helps to avoid holes, too. Hofmeyr [146] introduced
the concept of permutation masks to give a detector a sec-
ond representation. Permutation masks are analogous to
the MHC molecules in HIS. In fact, changing representa-
tion is equivalent to changing “shape” of detectors. Das-
gupta and other researchers [226] then suggested variable-
sized [154, 155, 227, 228] and variable-shaped detectors
(e.g. hyper-rectangular [62, 123], hypersphere [119, 155],
hyper-ellipsoid [247], or a combination of them [24, 25]).
Niching sometimes contributes filling holes, because it at-
tempts to maximize the space coverage and minimize the
overlaps among them.
Holes bring another issue. Hofmeyr explained in [146]

that the longer the period of time over which holes remain
unchanged, the more likely an intruder will find gaps, and
once found, those gaps can be exploited more often. There-

22

fore, he proposed a combination of rolling coverage and
memory cells to solve this problem. Each detector is given
a finite lifetime. At the end of its lifetime, it is eliminated
and replaced by a new active detector, thus resulting in a
rolling coverage. Memory detectors ensure that what has
been detected in the past will still be detected in the future.

4.4.4.4. The Estimation of Coverage No matter whether
detectors are generated exhaustively or by using evolution-
ary algorithms, a measure is required to decide when to
stop the generation process. Estimating the coverage ratio,
which is also called detector coverage, is one major research
subject of NA algorithms.
Forrest [101] and D’haeseleer [75] estimated the num-

ber of detectors for a given failure probability when the
exhaustive generation and the r-continuous matching rule
were used; later Esponda et al. [87] discussed the calcula-
tion of the expected number of unique detectors under the
r-chunks matching rule for both the positive and negative
selection algorithm.

Dasgupta et al. [62] and Ji [155] estimated the coverage
by retry times. Later Ji used hypothesis testing to esti-
mate the detector coverage in v-vector NS algorithm [156].
González [122] and Balachandran [25] used the Monte Carlo
estimation to calculate the detector coverage.

4.4.5. Affinity Maturation and Gene Library Evolution
As described previously, the affinity maturation is the ba-

sic feature of an immune response to an antigenic stimulus.
Clonal selection and somatic hypermutation are essentially
a Darwinian process of selection and variation, guarantee-
ing high affinity and specificity in non-self recognition in a
dynamically changing environment. Computationally, this
leads to the development of evolution inspired clonal selec-
tion algorithms. These algorithms rely on the input of non-
self data (antigens), whereas negative selection algorithms
need self data as input.
Forrest et al. [102] first used genetic algorithm with

niching to emulate clone selection. Kim and Bentley in [172]
embedded the NS algorithm as an operator into Forrest’s
work. This operator filtered out invalid detectors generated
by mutation. Since this algorithm only works on a static
dataset, it was named static clonal selection algorithm.
Later same authors introduced Hofmeyr’s lifecycle model
to this algorithm to cope with dynamic environment. This
new algorithm was called dynamic clonal selection [169].
Although this algorithm was able to incrementally learn
normal behavior by experiencing only a small subset of self
samples at one time, it showed high FP errors owing to
the infinite lifespan of memory cells. The next step was
naturally to define a lifecycle for memory cells. When an
antigen detected by a memory cell turned out to be a
self-antigen, this memory cell would be deleted. Such a
confirmation was equivalent to the co-stimulation signal in
Hofmeyr’s model [173, 175]. Dasgupta et al. also employed
the clone selection in their multi-level model [63]. Both

mature B-detectors and T-detectors proliferated and were
mutated depending on their affinity with antigens.

The clonal selection algorithm implementing affinity mat-
uration is now gradually developed into a new computa-
tional paradigm. CLONALG (CLONal selection ALGo-
rithm) [69], ARIS (Artificial Immune Recognition System)
[271], and opt-aiNet [66] are well known clonal selection al-
gorithms. These algorithms are used in performing machine-
learning and pattern recognition tasks, and solving opti-
mization problems. Although they employ the generation-
based model and evolutionary operators when generating
offspring, they distinguish themselves from other evolu-
tionary algorithms by the following: firstly, cloning and
mutation rate are decided by an individual’s affinity. The
cloning rate is proportional to the affinity, while the muta-
tion rate is inversely proportional to the affinity. There is
no crossover in clonal selection algorithms; secondly, it is a
multi-modal preserving algorithm. The memory cell popu-
lation (Pm) incrementally saves the best solution in each
generation. Pm will be returned as the final solution when
the algorithm is terminated; thirdly, the population size is
dynamically adjustable. Applications of these algorithms
to intrusion detection can be found in [116, 195, 196, 276]
In the biological immune system, antibodies are gener-

ated by combining fragments from gene libraries. Gene li-
braries, shaped by evolution, are used to guide the creation
process to create antibodies with a good chance of success,
while preserving the ability to respond to novel threats [45].

Perelson et al [232] and Cayzer et al. [44, 45] showed
that gene libraries can enhance coverage. Cayzer et al.,
in addition, investigated the role of gene libraries in AIS
[44, 45]. Their empirical experiments suggest that gene
libraries in AIS provide combinatorial efficiency, reduce
the cost of negative selection, and allow targeting of fixed
antigen populations.
Kim and Bentley [174, 175] employed gene library evo-

lution to generate useful antibodies. A problem found in
their extended dynamic clonal selection algorithm was that
a large number of memory detectors require costimulations
in order to maintain low FP rates. This was because new
detectors were generated randomly, thus increasing the
possibilities of generating invalid detectors. The authors
suggested taking feedbacks from previously generated de-
tectors, such as using deleted memory detectors as the
virtual gene library. They argued that these deleted mem-
ory detectors still held valid information about antibodies,
so new detectors were generated by mutating the deleted
detectors. Further finetuning of these detectors would gen-
erate a useful detectors with high probabilities.

4.4.6. Danger Theory
The fundamental principle that guides the development

of AIS is the self non-self discrimination. Immune responses
are triggered when the body encounters non-self antigens.
Therefore, negative selection acts an important filter to
eliminate autoreactive lymphocytes. However, questions

23

have been raised regarding this classical theory, because it
cannot explain transplants, tumors, and autoimmunity, in
which some non-self antigens are not eliminated, while some
self antigens are destroyed. Matzinger, therefore, proposed
the Danger Model [209, 210], and claimed that immune
responses are triggered by unusual death of normal tissues,
not by non-self antigens. Unusual death would indicate
that there was a dangerous situation.

This theory is still debated within the immunology field.
Nevertheless, it provides some fresh ideas that may benefit
the design of an AIS. For example, it avoids the scaling
problem of generating non-self patterns. Aickelin and his
research group started to work on a “Danger Project” [1] in
2003, intended to apply Danger Theory to intrusion detec-
tion systems. The authors emphasis the crucial role of the
innate immune system for guiding the adaptive immune
responses. Their research specifically focuses on building
more biologically-realistic algorithms which consider not
only adaptive, but also innate immune reactions [13, 14].
Their work so far can be mainly summarized as one in-
nate immunity architecture, and two danger theory based
algorithms.
Before we discuss their work, the biological inspiration

should be explained in more detail. Danger Theory is based
on the difference between healthy and stressed/injured
cells. It suggests that cells do not release alarm signals
when they die by normally planned processes (known as
apoptosis), whereas cells do release alarm signals when
they are stressed, injured, or die abnormally (known as
necrosis). A type of cells known as Dendritic Cells (DC)
act an important media, passing the alarm signal to the
adaptive immune system. DCs have three distinct states:
immature (iDC), semimature (smDC), and mature (mDC).
iDCs exist in the extralymphoid compartments, where they
function as macrophages: clear the debris of tissue, degrade
their proteins into small fragments, and capture alarm
signals released from necrose cells using toll-like receptors
(TLR). Once iDCs collect debris and are activated by an
alarm signal, they differentiate into mDCs, and migrate
from the tissue to a lymph node. However, if iDCs do not
receive any activation in their lifespan but collect debris,
they differentiate into smDCs, and also move to a lymph
node. Once in a lymph node, mDCs and smDCs present
those fragments collected in the immature stage as antigens
at their cell surface using MHC molecules. When a naive T
cells in the lymph node binds to these antigens, it will be
activated only if the antigens it bonds to are presented by
an mDC; it will not response if the antigens are presented by
an smDC. This is because mDCs secrete a type of cytokines
called IL-12 which activate naive T cells, while smDCs
secrete a type of cytokines called IL-10 which suppress
naive T cells. In summary, DCs act as a bridge between the
innate and adaptive immune system. They will trigger an
adaptive immune response when danger has been detected
[127, 128, 267].
From the above discussion, we can see that tissues pro-

vide an environment that can be affected by viruses and

bacteria, so that signals are sent out and an immune re-
sponse is initiated. Both Aickelin and Bentley proposed
the idea of artificial tissues, because real-world problems
sometimes are very difficult to be connected, compared,
and mapped to artificial immune algorithms. Similar to
the function of tissues, artificial tissues form an interme-
diate layer between a problem and an artificial immune
algorithm, for example, providing data pre-processing for
artificial immune algorithms. However, they held different
perspectives about artificial tissues.
Bentley et al. [33] introduced two tissue growing algo-

rithms for anomaly detection. Artificial tissue grows to form
in a specific shape, structure and size in response to specific
data. When data does not exist to support a tissue, the tis-
sue dies. When too much or too diverse data exist for a tis-
sue, the tissue divides. Danger signals are released when a
tissue dies. In a sense, artificial tissues provide generic data
representations, enabling them to function as an interface
between a real-world problem and an artificial immune algo-
rithm. Twycross and Aickelin, on the other hand, proposed
a libtissue architecture in [266], which allowed researchers
to implement, analyze and test new AIS algorithms, as
shown in Figure 22. libtissue has a client/server architec-
ture. libtissue clients represent the data collected from the
monitored systems as antigens and signals, and then trans-
mit them to the libtissue server. The client also responds to
outputs from the libtissue server, and changes the state of
the monitored system. On the libtissue server, one or more
tissue compartments are defined. Compartments provide
an environment, where immune cells, antigens and signals
interact. Immune cells, which are embodied by the artificial
immune algorithms, perform analysis and detection. The
final decision will be sent back to the client.

Fig. 22. The architecture of libtissue [266].

Another observation from the introduction of the Danger
Theory is the role of DCs and their interaction with T-cells.
Hence, the Dendritic Cell algorithm (DCA) [125, 126, 127,
128, 129, 130] and TLR algorithm (TLRA) [267, 268, 269]
were proposed by Greensmith et al. and Twycross et al.,
respectively.

DCA attempts to simulate the power of DCs which are
able to activate or suppress immune responses by correla-
tion of signals representing their environment, combined

24

with locality markers in the form of antigens [128]. To em-
ulate DCs, representing signals and antigens is the core
of the algorithm. Antigens are the input data. Based on
immunological observation, Greensmith et al. defined four
input signals in the DCA: pathogen associated molecular
patterns (PAMPs), safe signals, danger signals and inflam-
matory cytokines [127]. These signals describe the context
or environment of an antigen, derived either from input
data or the indices of monitored system, such as CPU us-
age or errors recorded by log systems. The DCA starts with
creating a population of immature DCs. Each iDC collects
antigens and signals, and transforms them by an equation
to three output concentrations: costimulatory molecules
(csm), smDC cytokines (semi) and mDC cytokines (mat).
csm tracks the maturation of a DC. When this quantity is
larger than a pre-defined threshold, this DC is said to be
mature, and will be moved to the lymph node. The other
two outputs, semi and mat, will determine if this DC will
develop to be an smDC or mDC. Matured DCs are ready
for intrusion detection. In summary, the maturation phase
in the DCA actually correlates signals and antigens to nor-
mal or danger context. The DCA is deployed in the libtissue
framework to detect port scan intrusions, specifically ping
scans [125, 128] and SYN scans [126]. Kim et al. applied
this algorithm to detect misbehavior in sensor networks
[171].
TLRA focuses on the interaction between DCs and T-

cells, which replaces the classical negative selection algo-
rithm. TLRA are completed in a training and testing phase.
In training, only normal data is presented to DCs. Ac-
cordingly, all DCs will develop to smDCs. smDCs in a
lymph node will match with randomly generated T-cells.
If a match happens, which means smDCs activate naive T-
cells, then these T-cells will be killed. In the testing phase,
anomaly is detected when naive T-cells are activated by
antigens. Compared to the classical negative selection al-
gorithms, TLRA considers the environment of the input
data, not only the antigen itself, thus increasing the detec-
tion rate and decreasing the false positive rate. The TLRA
was deployed in the libtissue framework to detect process
anomaly [267, 268, 269]. Kim et al. in [177] emulated in-
teractions between DCs and T cells in the CARDINAL
(Cooperative Automated worm Response and Detection
ImmuNe ALgorithm), too. However, T cells in CARDINAL
will differentiate into various effector T cells, such as helper
T cells and cytotoxic T cells. These effector T cells are au-
tomated responsers that react to worm-related processes.
They also exchange information with effector T cells from
other hosts when they respond.

In summary, both the DCA and TLRA employ the model
of DCs, which is an important element in the innate immune
system. Experimental results of both algorithms showed
good detection rate, thus further confirming that incorpo-
rating innate immune response benefits the development
of an AIS. The implementation of these two algorithms fo-
cuses on the different aspects of the DC model. The DCA
relies on the signal processing aspect by using multiple in-

put and output signals, while the TLRA emphasizes the
interaction between DCs and T-cells, and only uses danger
signals. The DCA does not require a training phase, but
needs to assign input signals to the appropriate categories.
The TLRA uses two types of cells, while DCA only uses
one type of cells. As shown in [128], the DCA depends on
few tunable parameters, and is robust to changes in the ma-
jority of these parameters. However, choosing good signals
should not be trivial, and might affect the performance of
both algorithms.

4.4.7. Summary
In this section, we reviewed the progress in artificial

immune systems and their applications to intrusion detec-
tion domain. The successful protection principles in the
human immune system have inspired great interest for de-
veloping computational models mimicking similar mecha-
nisms. Reviewing these AIS-based intrusion detection sys-
tems or algorithms, we can conclude that the character-
istics of an immune system like uniqueness, distribution,
pathogen recognition, imperfect detection, reinforcement
learning and memory capacity compensate weaknesses of
the traditional intrusion detection methods, thus resulting
in dynamic, distributed, self-organized and autonomous
intrusion detection.

The HIS has a hierarchical structure consisting of various
molecules, cells, and organs. Therefore, researchers may
have their own perspective and versions when starting to
model. Table 7 summarizes the similarities between the
approaches.
From this table, it is evident that NS algorithms are

more thoroughly investigated and widely used than other
AIS approaches in intrusion detection. This is because NS
algorithms lead anomaly detection into a new direction:
modeling non-self instead of self patterns. We also notice
the quick emergence of Danger Theory, which provides some
fresh ideas that benefit the design of AISs. The lifecycle
of detectors has been proven as an effective way to avoid
holes and adapt to the changes in self data. Few of the
research reviewed use immune networks.

Although AIS is a relatively young field, it has received
a great deal of interest, and there has been some significant
developments recently. Meanwhile, researchers have shown
an interest in not only developing systems, but have started
to think more carefully about why and how to develop and
apply these immune inspired ideas. As a result, a number
of AISs research groups published state-of-the-art reviews
of AIS research in 2006 and 2007, attempting to reorganize
the research efforts, to clarify terminology confusion and
misunderstandings, and to reconsider the immunological
metaphors before introducing more new ideas, specifically
[61] by Dasgupta, [98] by Forrest, [158] by Ji and Dasgupta,
[170] by Kim, Bentley, Aickelin et al. and [260] by Timmis.
This also implies that anomaly detection is getting more
attention.

Despite many successes of AIS-based IDSs, there remain

25

T
ab

le
7:

Su
m

m
ar

y
of

A
rt

ifi
ci

al
Im

m
un

e
Sy

st
em

H
IS

A
IS

L
ay

er
s

Im
m

un
e

M
ec

ha
ni

sm
A

lg
or

it
hm

T
ra

in
in

g
D

at
a

R
es

ea
rc

h
W

or
k

A
da

pt
iv

e
N

eg
at

iv
e

Se
le

ct
io

n
(T

ce
lls

an
d

B
ce

lls
)

N
eg

at
iv

e
Se

le
ct

io
n

Se
lf

[2
4]

b
,[

25
],

[6
3]

,[
10

0]
,[

10
1]

,[
11

8]
a
,[

11
9]

,[
12

2]
,[

15
1]

,
[1

54
],

[1
57

][
15

2]
a
,[

15
5]

,[
16

8]
,[

28
6]

,[
24

7]
,[

22
8]

,[
22

6]
,

[2
27

],
[1

36
],

[1
35

],
[1

37
]

C
lo

na
l

Se
le

ct
io

n
(B

ce
lls

)
C

lo
na

l
Se

le
ct

io
n

N
on

se
lf

[1
72

],
[1

69
],

[1
74

],
[1

73
],

[1
67

]a
,

[1
75

],
[2

76
],

[1
96

],
[1

16
],

[1
95

]

Id
io

ty
pi

c
N

et
w

or
k

Im
m

un
e

N
et

w
or

k
N

on
se

lf
[1

94
]

C
el

l
L

ife
cy

cl
e

D
et

ec
to

r
L

ife
cy

cl
e

Se
lf

[1
46

]a
,

[1
45

],
[2

9]
,

[1
12

],
[2

73
],

[1
39

]b
,

[1
40

],
[1

74
],

[1
75

]

In
na

te
D

en
dr

it
ic

C
el

ls
D

C
A

lg
or

it
hm

Se
lf

an
d

no
ns

el
f

[1
5]

,[
12

9]
,[

12
7]

,[
13

0]
,[

12
5]

,[
12

8]
,[

12
6]

,[
17

6]
,[

25
8]

T
C

el
ls

an
d

D
en

dr
it

ic
C

el
ls

T
L

R
A

lg
or

it
hm

Se
lf

[1
77

],
[2

67
],

[2
69

],
[1

57
],

[2
68

]a

a
P

h.
D

T
he

si
s

b
M

as
te

r
T

he
si

s

some open questions:
– Fitting to real-world environments. Currently most
of the algorithms were tested on the KDD99 dataset.
However, real-world environments are far more compli-
cated. Hence, improving the efficiency of the current AIS
algorithms is necessary. To take NS algorithms as an ex-
ample, one needs to consider how to avoid the scaling
problem of generating non-self patterns; how to detect
and fill holes; how to estimate the coverage of rule sets;
and how to deal with a high volume and dimensional
data.

– Adapting to changes in self data. Normal behavior
is constantly changing, and so should normal patterns.
Although the concept of a detector’s lifecycle contributes
to adaption, co-stimulation signals from system adminis-
trators are required, which is infeasible in reality. Hence,
related mechanisms from the human immune system
should be further explored, and carefully mapped to
solve anomaly detection problems.

– Novel and accurate metaphors from immunology.
Current AIS algorithms oversimplify their counterparts
in immunology. One needs to carefully exploit all known
useful features of immune systems, as well as consider
the latest discoveries in immunology. A better under-
standing of immunology will provide informative insight
into designing completely new models of AIS.

– Integrating immune responses. The HIS not only
recognizes nonself antigens, but also removes these anti-
gens after recognition. Current AIS-based IDSs focus
on self and nonself recognition. Few research so far dis-
cussed the response mechanism after detection. A re-
sponse within an IDS context does not simply mean the
generation of an alert, but an implemented change in
the system as the result of a detection.

4.5. Swarm Intelligence

Swarm Intelligence (SI) is an artificial intelligence tech-
nique involving the study of collective behavior in decentral-
ized systems [3]. It computationally emulates the emergent
behavior of social insects or swarms in order to simplify
the design of distributed solutions to complex problems.
Emergent behavior or emergence refers to the way complex
systems and patterns arise out of a multiplicity of relatively
simple interactions [3]. In the past few years, SI has been
successfully applied to optimization, robotics, and military
applications. In this section, we will review its contribu-
tions into the intrusion detection domain by discussing two
swarm motivated research methods.

4.5.1. Swarm Intelligence Overview
We can observe various interesting animal behavior in

nature. Ants can find the shortest path to the best food
source, assign workers to different tasks, or defend a terri-
tory from neighbors; A flock of birds flies or a school of fish
swims in unison, changing directions in an instant without

26

colliding with each other. These swarming animals exhibit
powerful problem-solving abilities with sophisticated col-
lective intelligence.
Swarm intelligence approaches intend to solve compli-

cated problems by multiple simple agents without central-
ized control or the provision of a global model. Local inter-
actions among agents and their environment often cause
a global pattern of behavior to emerge. Hence, emergent
strategy and highly distributed control are the two most
important features of SI, producing a system autonomous,
adaptive, scalable, flexible, robust, parallel, self organizing
and cost efficient [223].

Generally speaking, SI models are population-based. In-
dividuals in the population are potential solutions. These
individuals collaboratively search for the optimum through
iterative steps. Individuals change their positions in the
search space, however, via direct or indirect communica-
tions, rather than the crossover or mutation operators in
evolutionary computation. There are two popular swarm
inspired methods in computational intelligence areas: Ant
colony optimization (ACO) and particle swarm optimiza-
tion (PSO). ACO simulates the behavior of ants, and has
been successfully applied to discrete optimization problems;
PSO simulates a simplified social system of a flock of birds
or a school of fish, and is suitable for solving nonlinear
optimization problems with constraints.

4.5.2. Ant Colony Optimization
Ants are interesting social insects. Individual ants are not

very intelligent, but ant colonies can accomplish complex
tasks unthinkable for individual ants in a self-organized
way through direct and indirect interactions. Two types of
emergent behavior observed in ant colonies are particularly
fascinating: foraging for food and sorting behavior.
A colony of ants can collectively find out where the

nearest and richest food source is located, without any
individual ant knowing it. This is because ants lay chem-
ical substances called pheromones to mark the selected
routes while moving. The concentration of pheromones on
a certain path indicates its usage. Paths with a stronger
pheromone concentration encourages more ants to follow,
thus in turn these additional ants reinforce the concentra-
tion of pheromones. Ants who reach the food first by a short
path will return to their nest earlier than others, so the
pheromones on this path will be stronger than other longer
paths. As a result, more ants choose the short path. How-
ever, pheromones slowly evaporate over time. The longer
path will hold less or even no traces of pheromone after
a same time, further increasing the likelihood for ants to
choose the short path [223].

Researchers have applied this ant metaphor to solve dif-
ficult, discrete optimization problems, including the travel-
ing salesman problem, scheduling problems, the telecom-
munication network or vehicle routing problem, etc. Its
application to the intrusion detection domain is limited but
interesting and inspiring. He et al. [142] proposed an Ant-

classifier algorithm, which is an extension of the Ant-Miner
for discovering classification rules [230]. Artificial ants for-
age paths from the rule antecedents to the class label, thus
incrementally discovering the classification rules, as shown
in Figure 23. He et al. noticed that using only one ant
colony to find paths in all classes was inappropriate, be-
cause the pheromone level updated by a certain ant would
confuse successive ants interested in another class. So more
than one colony of ants (i.e. red ants and blue ants in Fig-
ure 23) were applied to find solutions for multi-class classi-
fication problems simultaneously with each colony to focus
on one class. Each colony of ants deposited a different type
of pheromone, and ants were only attracted by pheromones
deposited by ants in the same colony. In addition, a repul-
sion mechanism prevented ants of different colonies from
choosing the same optimal path. Banerjee et al. [30, 31]

Fig. 23. A multi-class classification algorithm based on multiple ant

colonies [142].

suggested to use ACO to keep track of intruder trails. The
basic idea is to identify affected paths of intrusion in a
sensor network by investigating the pheromone concentra-
tion. This work also emphasizes the emotional aspect of
agents, in that they can communicate the characteristics of
particular paths among each other through pheromone up-
dates. Therefore, in a sensor network if the ants are placed,
they could keep track the changes in the network path, fol-
lowing certain rules depicting the probabilities of attacks.
Once a particular path among nodes is detected by the
spy emotional ant, it can communicate the characteristics
of that path through pheromone balancing to other ants;
thereafter network administrators could be alerted.

In addition to finding the shortest path, ants also exhibit
amazing abilities to sort objects. Ants group brood items
at similar stages of development (e.g. larvae, eggs, and
cocoons) together. In order to do sorting, ants must sense
both the type of element they are carrying, and the local
spatial density of that type of element. Specifically, each
ant must follow some local strategy rules: it wanders a bit;
if it meets an object which has a different type of objects
around it and if it does not carry one, it takes that object; if
it transports an object and sees a similar object in front of
it, it deposits the object. By executing these local strategy
rules, ants display the ability of performing global sorting
and clustering of objects.
Deneubourg et al. [73] in 1990 first related this biologi-

cal observation to an ant-based clustering and sorting al-
gorithm. The basic ant algorithm started with randomly

27

scattering all data items and some ants on a toroidal grid.
Subsequently, the sorting phase repeated the previously
mentioned local strategy rules. Deneubourg introduced a
“short-term memory” concept in ant-based clustering al-
gorithms. The short-term memory saved the position of
the last data item encountered, but it only permitted dis-
crimination between a limited number of classes of data
items. This limitation had been overcome later by Lumer
and Faieta [201] who allowed their ants to remember the
last few data items carried and their dropping positions.
When a new data item was picked up, the position of the
“best matching” data item memorized was used to bias the
direction of the ant’s random walk. The authors also were
able to generalize this basic model to other problems in
numeric data analysis.
An ant deciding whether to pick up or drop an item i

considers the average similarity of i to all items j in its
local neighborhood. The local density of similarity (f(oi))
is calculated by Equation 2a, where j denotes the neigh-
borhood of an object oi; function d(oi, oj) measures the
similarity of two objects; δ2 is the size of the local neighbor-
hood; α ∈ [0, 1] is a data-dependent scaling parameter. The
probability of picking up (Ppick(oi)) and dropping an ob-
ject (Pdrop(oi)) is shown in Equation 2b and Equation 2c,
respectively, where k1 and k2 are scaling parameter.

f(oi) = max

0,
1
δ2

∑
j

(1− d(oi, oj)
α

)

 (2a)

Ppick(oi) = (
k1

k1 + f(oi)
)2 (2b)

Pdrop(oi) =

 2f(oi) if f(oi) < k2

1 if f(oi) ≥ k2

(2c)

Romos and Abraham [235] applied this ant-based clus-
tering algorithm to detect intrusion in a network infras-
tructure. The performance was comparable to the Deci-
sion Trees, Support Vector Machines and Linear Genetic
Programming. The online processing ability, dealing with
new classes, and the self-organizing nature of this approach
make ant-based clustering algorithms an ideal candidate
for IDSs. Similar work done by Feng et al. can also be
found at [90, 91, 92]
Tsang and Kwong [262, 263] evaluated the basic ant-

based clustering algorithm and an improved version [134]
on the KDD99 dataset. They found that these two algo-
rithms suffer from two major problems on clustering large
and high dimensional network data. First, many homoge-
neous clusters are created and are difficult to be merged
when they are large in size and spatially separated in a
large search space. Second, the density of similarity mea-
sures only favors cluster formation in locally dense regions
of similar data objects but cannot discriminate dissimilar
objects with any sensitivity. The authors made further im-
provements on these algorithms, such as combining infor-
mation entropy and average similarity in order to identify

spatial regions of coarse clusters, and to compact clusters
and incorrectly merged clusters; cluster formation and ob-
ject searching were guided by two types of pheromones,
respectively; local regional entropy was added to the short-
term memory; a tournament selection scheme counterbal-
anced the population diversity and allowed to find optimal
values for control parameters, e.g. α-value, or perception
radius. Experiments on the KDD99 dataset showed strong
performance in that their algorithm obtained three best
and two second best results in five classes, when compared
with KDD99 winner, K-means, [73] and [134].

4.5.3. Particle Swarm Optimization
Particle swarm optimization (PSO) is a population based

stochastic optimization technique developed by Kennedy
and Eberhart [166], inspired by social behavior such as bird
flocking or fish schooling.
A high-level view of PSO is a collaborative population-

based search model. Individuals in the population are called
particles, representing potential solutions. The performance
of the particles is evaluated by a problem-dependent fitness.
These particles move around in a multidimensional search-
ing space. They move toward the best solution (global op-
timum) by adjusting their position and velocity according
to their own experience (local search) or the experience of
their neighbors (global search), as shown in Equation 3. In
a sense, PSO combines local search and global search to
balance exploitation and exploration.

vi(t) = w × vi(t− 1)

+ c1 × r1(pl
i − xi(t− 1))

+ c2 × r2(pg
i − xi(t− 1))

(3a)

xi(t) = xi(t− 1) + vi(t) (3b)

where i = 1, 2, . . . , N , population size N ; vi(t) represents
the velocity of particle i, which implies a distance traveled
by i in generation t; xi(t) represents the position of i in
generation t; pl

i represents the previous best position of
i; pg

i represents the previous best position of the whole
swarm; w is the inertia weight which balances the local and
global searching pressure;c1 and c2 are positive constant
acceleration coefficients which control the maximum step
size of the particle; r1 and r2 are random number in the
interval [0,1], and introduce randomness for exploitation.
PSO has shown good performance in solving numeric

problems. In the context of intrusion detection, PSO algo-
rithms have been used to learn classification rules. Chen
et al. [49] demonstrated a “divide-and-conquer” approach
to incrementally learning a classification rule set using a
standard PSO algorithm. This algorithm starts with a full
training set. One run of the PSO is expected to produce the
best classifier, which is added to the rule set. Meanwhile,
data covered by this classifier are deleted from the training
dataset. This process is repeated until the training dataset
is empty. Abadeh et al. [5] embedded a standard PSO into
their fuzzy genetic algorithm. The GA searches for the best
individual in every subpopulation. The PSO was applied

28

to the offspring generated by crossover and mutation, aim-
ing to improve the quality of fuzzy rules by searching in
their neighborhood. Age was assigned to individuals before
the start of local search. Fitter individuals live longer, thus
having a longer time to perform local search. In their al-
gorithm, the population consists N subpopulations, where
N is the number of classes. Steady-state strategy was em-
ployed to update populations.

The classification task usually involves a mixing of both
continuous and categorical attribute values. However, a
standard PSO does not deal with categorical values: cat-
egory values do not support the “+” and “-” operations
shown in Equation 3. Hence Chen et al. mapped category
values to integers. The order in mapped sequences some-
times makes no sense in the context of original nominal
values, and mathematical operations applied to this artifi-
cial order may generate counter-intuitive results. Abadeh
et al. then redefined the meaning of “+” and “-” operators
in Equation 3 by the Rule Antecedent Modification (RAM)
operator. The RAM operator can be explained by a sim-
ple example. Suppose a linguistic variable R has five fuzzy
sets: {S,MS,M,ML,L}. Antecedent A and B in two par-
ticles may contain {S,M} and {S,L} respectively. B−A =
RAM(2, 3), which means B can be converted to A if the
2nd fuzzy set in B is replaced with the 3rd fuzzy set in R.
Here RAM(2, 3) is a RAM operator. B +RAM(2, 3) = A
means applying RAM operator RAM(2, 3) to B will result
in A.

4.5.4. Summary
In this section, Ant Colony Optimization (ACO) and

Particle Swarm Optimization (PSO) and their applications
to intrusion detection domain were reviewed. They either
can be used to discover classification rules for misuse detec-
tion, or to discover clusters for anomaly detection, or even
can keep track of intruder trails. Experiments results have
shown that these approaches achieve equivalent or better
performance than traditional methods.

ACO and PSO both have their roots in the study of the
behavior of social insects and swarms. Swarms demonstrate
incredibly powerful intelligence through simple local inter-
actions of independent agents. Such self-organizing and
distributed properties are especially useful for solving in-
trusion detection problems, which are known for their huge
volume and high dimensional datasets, for real-time detec-
tion requirement, and for diverse and constantly changing
behavior. Swarm Intelligence would offer a way to decom-
pose such a hard problem into several simple ones, each of
which is assigned to an agent to work on in parallel, conse-
quently making IDSs autonomous, adaptive, parallel, self
organizing and cost efficient.

4.6. Soft Computing

Soft computing is an innovative approach to construct a
computationally intelligent system which parallels the ex-

traordinary ability of the human mind to reason and learn
in an environment of uncertainty and imprecision [282].
Typically, soft computing embraces several computational
intelligence methodologies, including artificial neural net-
works, fuzzy logic, evolutionary computation, probabilistic
computing, and recently also subsumed artificial immune
systems, belief networks, etc. These members neither are
independent of one another nor compete with one another.
Rather, they work in a cooperative and complementary
way.

The synergism of these methods can be tight or loose.
Tightly coupled soft computing systems are also known as
hybrid systems. In a hybrid system, approaches are mixed
in an inseparable manner. Neuro-fuzzy systems, genetic-
fuzzy systems, genetic-neuro systems and genetic-fuzzy-
neuro systems are the most visible systems of this type.
Comparatively, loosely coupled soft computing systems,
or ensemble systems, assemble these approaches together.
Each approach can be clearly identified as a module.
In this section, we will discuss how to learn uncertain

and imprecise intrusive knowledge using soft computing.
Hence, neuro-fuzzy and genetic-fuzzy hybrid approaches
are introduced first. The discussion about the genetic-neuro
and genetic-fuzzy-neuro hybrid systems can be found in
Section 4.3.1.2. The last part of this section will examine the
role of ensemble approaches played in intrusion detection.

4.6.1. Artificial Neural Networks and Fuzzy Systems
Artificial neural networks model complex relationships

between inputs and outputs and try to find patterns in data.
Unfortunately, the output models are often not represented
in a comprehensible form, and the output values are al-
ways crisp. Fuzzy systems have been proven to be effective
for dealing with imprecision and approximate reasoning.
However, constructing a well-performed fuzzy system is not
trivial. For example, determining appropriate membership
functions and fuzzy rules is often a trial and error process.

Obviously, the fusion of neural networks and fuzzy logic
benefits both sides: neural networks perfectly facilitate the
process of automatically developing a fuzzy system for a
given task by their learning and adaptation ability. This
combination is called neuro-fuzzy systems; fuzzy systems
make ANNs robust and adaptive since the output is no
longer crisp. This combination is called fuzzy neural net-
works (FNN). For example, Zhang et al. [287] employed
FNNs to detect anomalous system call sequences to decide
whether a sequence is “normal” or “abnormal”.

Neuro-fuzzy systems are commonly represented as a mul-
tilayer feed forward neural network, as illustrated by Fig-
ure 24. The neurons in the first layer accept input informa-
tion. The second layer contains neurons which transform
crisp values to fuzzy sets, and output the fuzzy member-
ship degree based on associated fuzzy membership func-
tion. Neurons in the third layer represent the antecedent
part of a fuzzy rule. Their outputs indicate how well the
prerequisites of each fuzzy rule are met. The fourth layer

29

Fig. 24. A generic model of a neuro-fuzzy system [21].

performs defuzzification, and associates an antecedent part
with an consequent part of a rule. Sometimes more than
one defuzzification layer is used. The learning methods
work similarly to that of ANNs. According to the errors
between output values and target values, membership func-
tions and weights between reasoning layer and defuzzifi-
cation layer are adjusted. Through learning, fuzzy rules
and membership function will be automatically determined.
The common learning method is back propagation.

Intrusion detection systems normally employ neuro-fuzzy
systems for classification tasks. For example, Toosi et al.
[261] designed an IDS by using five neuro-fuzzy classifiers,
each for classifying data from one class in the KDD99
dataset. The subtractive clustering method was utilized
to determine the number of rules and initial membership
functions. The neural network helped to further adapt and
fine-tune the membership functions. Other similar neuro-
fuzzy based IDSs can be found in [21] and [217].

In order to avoid determining the number of rules before
training, the NEFCLASS system has been introduced. The
NEFCLASS system is created from scratch and starts with
no rule reasoning layer at all. Rules (neurons in the rule
reasoning layer) are created by using of the reinforcement
learning algorithm in the first run through the training data
(rule learning). In the second run, a fuzzy back propagation
algorithm adapts the parameters of membership functions
(fuzzy set learning). Hofmann [143] and Alshammari [18]
used this method for misuse detection on the DARPA98
and DARPA99 datasets, respectively. Hofmann et al. com-
pared the performance of four neural and fuzzy paradigms
(multilayer perceptrons, RBF networks, NEFCLASS sys-
tems, and classifying fuzzy-k-means) on four attack types.
The NEFCLASS is the first runner-up after the RBF. Al-
shammari et al. pointed out that the performance of the
NEFCLASS depends on the heuristics’ learning factors.
Through their experiments they found that a trapezoid
membership function using the weight as an aggregation
function for the ANN extensively reduces the number of
false positive alerts with fewer mistakes. In addition, pro-
viding more background knowledge about network traffic
provided better results on classification.
Another interesting type of neuro-fuzzy systems is the

Fuzzy Cognitive Map (FCM). FCM is a soft computing

methodology developed by Kosko as an expansion to cogni-
tive maps which are widely used to represent social scien-
tific knowledge [178]. They are able to incorporate human
knowledge, adapt it through learning procedures, and pro-
vide a graphical representation of knowledge that can be
used for explanation of reasoning. Xin et al. [277] and Siraj
et al. [249, 250] both used FCM to fuse suspicious events to
detect complex attack scenarios that involve multiple steps.
As Figure 25 shows, suspicious events detected by misuse
detection models are mapped to nodes in FCM. The nodes
in the FCM are treated as neurons that trigger alerts with
different weights depicting on the causal relations between
them. So, an alert value for a particular machine or a user
is calculated as a function of all the activated suspicious
events at a given time. This value reflects the safety level
of that machine or user at that time.

Suspicious event

Machine_Diff_User)

(Login_Failure_Same_

Suspicious event

Machine_Same_User)

(Login_Failure_Same_

Suspicious event

Machine_Same_User)

(Login_Failure_Diff_

Machine_Alert User_Alert

Suspicious event

(High_Login_Failure)

+0.8 +0.8+0.5 +0.5

+1.0 +1.0

Fig. 25. A FCM to fuse suspicious events to detect complex attack
scenarios that involve multiple steps [249].

4.6.2. Evolutionary Computation and Fuzzy Systems
Evolutionary computation is another paradigm with

learning and adaptive capabilities. Hence, EC became an-
other option for automatically designing and adjusting
fuzzy rules. In Section 4.3.1, we discussed how to use EC
approaches, especially GAs, to generate crisp rules to clas-
sify normal or intrusive behavior. Here, evolving fuzzy rules
can be regarded as an extension of this research.

Compared with crisp rules, fuzzy rules have the following
form:

if x1 = A1 and . . . and xn = An then Class Cj with CF = CFj

where xi is the attribute of the input data; Ai is the fuzzy
set; Cj is the class label; CFj is the degree of certainty
of this fuzzy if-then rule belonging to class Cj . Given in-
put data, there are several defuzzification techniques to
determine the class label. The winner-takes-all approach
and majority vote are two commonly used defuzzification
techniques. Winner refers to the rule with maximum CFj .
When using fuzzy logic, it is difficult for an expert to pro-
vide a “good” definition of membership functions. Genetic
algorithms have been proven [36, 261] to be successful at
tuning membership functions.
Building models for misuse detection essentially is a

multi-class classification problem. In previous research,

30

crisp classification rules for all classes were evolved in one
population. Each individual represented a partial solution
to the overall learning task. They cooperatively solve the
target problem. Niching was used to maintain the diversity
or multimodality in a population. This approach some-
times is called Michigan approach, which is one commonly
used method in classifier systems. The XCS mentioned in
Section 4.3.1 is an example of this kind. The Pittsburgh
approach and the iterative rule learning are another two
methods. In the Pittsburgh approach, each individual is a
set of rules, representing a complete solution for the tar-
get problem. Crossover exchanges rules in two individuals,
and mutation creates new rules. The iterative rule learning
basically is a divide-and-conquer method. Individuals are
defined in the same way as in the Michigan approach. After
a pre-defined number of generations, the best classification
rule is added to a population which keeps track of the best
individuals found so far. The data covered by this best rule
is either removed from the training dataset or decreased
the probability of being selected again. Work done by Chen
et al. in Section 4.5 explained this method.
Gómez et al. first showed evolving fuzzy classifiers for

intrusion detection in [113, 114]. Complete binary trees
enriched the representation of GA by using more logic
operators, such as “AND”, “OR”, and “NOT”. The authors
defined a multi-objective fitness function, which considered
sensitivity, specificity and conciseness of rules. Because
of their background in the AIS, they later integrated a
negative selection algorithm in evolving fuzzy rules in non-
self space [115, 123]. Here, the fitness function considered
the volume of the subspace represented by a rule and the
penalty a rule suffered if it covered normal samples.
Recent works conducted by Tsang et al. [264, 265],

Abadeh et al. [4, 6, 7] and Özyer et al. [229] further devel-
oped Gómez’s research in the following way:
– Parallel learning. Tsang et al. and Abadeh et al. both
suggested a parallel learning framework. Tsang et al.
used multiple fuzzy set agents (FSA) and one arbitrator
agent (AA). A FSA constructed and evolved its fuzzy
system. The AA evaluated the parent and offspring FSAs
by accuracy and interpretability criteria. Abadeh et al.
[6] divided the training dataset by class labels, and sent
subsets to different hosts, where a GA worked on each
sub-dataset in parallel.

– Seeding the initial population. Instead of generating
the initial population randomly, Abadeh et al. randomly
selected a training data sample, and determined the
most compatible combinations of antecedent fuzzy sets.
The consequent part was decided by a heuristic method.
If the consequent part was consistent with the class
label of data samples it covered, then this rule was kept,
otherwise the generation process was repeated. Özyer
et al. [229] ran the fuzzy association rule algorithm first.
The strongest association rules were used as seeds to
generate the initial population.

– Representation. All these research works represent
fuzzy if-then rules as string. “don’t care” (∗) symbol is

included in their representation as a wild card that al-
lows any possible value in a gene, thus improving the
generality of rules.

– Dynamically changing training data weights.
Abadeh et al. [4] and Özyer et al. [229] associated a
weight to every training sample. Initially, the weights
were the same. Weights of misclassified samples remained
the same, while weights of correctly classified samples
were decreased. Therefore, hard samples had higher
probabilities to be exposed in the training algorithms.
These three contributions, of course, were different in

many other ways. Mostly, they had different goals. Tsang
et al. emphasized the importance of interpretability of fuzzy
rules. Abadeh et al. tried to improve fuzzy rules by using lo-
cal search operators to search their neighborhood [6]. Özyer
et al. integrated boosting genetic fuzzy classifiers and data
mining criteria for rule pre-screening. These three works
also employed different classifier learning methods. Tsang
et al. employed the Pittsburgh approach; Abadeh et al. [4]
the Michigan approach; Özyer et al. the iterative learning
approach. Classification rates of the three approaches are
better than the winning entry at the Normal, DoS and
Probe classes. Özyer et al. and Tsang et al. have slightly
better or comparable results to the winning entry in the
other two classes. Abadeh et al. achieved 84.7% and 92.4%
compared to 13.2% and 8.4% in the winning entry on U2R
and R2L classes, respectively.

4.6.3. Ensemble Approaches
Misuse intrusion detection is a very active and well-

studied research area. Many classification approaches, from
artificial intelligence, machine learning, or computational
intelligence, have been applied to improve the detection
accuracy, while reducing false positive errors.
Every approach has its strengths and weaknesses, how-

ever, resulting in various accuracy levels on different classes.
The winning entry for the KDD99 cup, for instance, as-
sembled 50 × 10 C5 decision trees by cost-sensitive bagged
boosting. This indicated that even models built by the same
algorithm can show differences in misclassification. Differ-
ent methods provide complementary information about the
patterns to be classified. Hence, ensemble approaches im-
prove the overall performance of IDS. Techniques such as
majority vote, winner-takes-all and others, combine out-
puts from classifiers built by different methods to produce
a final prediction.
Abraham and his co-workers conducted a number of

studies on the ensemble approach for intrusion detection
[10, 12, 11, 48, 221, 231]. After individual, hybrid and en-
semble models were trained and tested, the best model for
each class was selected, and then was combined in order to
maximize both computational efficiency and detection ac-
curacy. Majority vote was finally used to decide the output
of ensemble methods. In [12, 231], the authors assembled
SVM, Decision Tree (DT) and hybrid SVM-DT approaches
(denoted as E1), as illustrated in Figure 26; in [221], they

31

Fig. 26. A exemplar of ensemble models [12].

assembled SVM, MARS (Multivariate Adaptive Regres-
sion Splines), an ANN with resilient back propagation, an
ANN with scaled conjugate gradient and an ANN with one-
step-secant (denoted as E2); in [48], they assembled CART
(classification and regression trees) and Bayesian Networks
with different feature sets (denoted as E3); in [10, 11], they
assembled DT, LGP, and fuzzy rules generated by partition
of overlapping areas.

Results produced by these methods on test sets are shown
in Table 8. Results are not comparable to the winning
entry because different data were used: the winning entry
used the complete KDD99 training and testing datasets,
while Abraham et al. conducted experiments on the dataset
containing only 11,982 records randomly generated from the
KDD99 dataset, with 5,092 and 6,890 records for training
and testing, respectively. However, it can be seen that
computational intelligence approaches (LGP and fuzzy
rules) detect attacks with high accuracy while only using
12 attributes.

4.6.4. Summary
Soft computing exploits tolerance for imprecision, uncer-

tainty, low solution cost, robustness, and partial truth to
achieve tractability and better correspondence to reality
[282]. Their advantages, therefore, boost the performance
of intrusion detection systems. Evolutionary computation
and artificial neural networks automatically construct fuzzy
rules from training data, and present knowledge about in-
trusion in a readable format; evolutionary computation
designs optimal structures of artificial neural networks.
These methods in soft computing collectively provide un-
derstandable and autonomous solutions to IDS problems.
In addition, research has shown the importance of using
ensemble approach for modeling IDS. An ensemble helps
to combine the synergistic and complementary features of
different learning paradigms indirectly, without any com-
plex hybridization. Both the hybrid and ensemble systems
indicate the future trends of developing intrusion detection
systems.

5. Discussion

Over the past decade intrusion detection based upon
computational intelligence approaches has been a widely

studied topic, being able to satisfy the growing demand of
reliable and intelligent intrusion detection systems.
In our view, these approaches contribute to intrusion

detection in different ways. Since fuzzy sets represent and
process numeric information in linguistic format, they make
system complexity manageable by mapping a large numer-
ical input space into a smaller search space. In addition,
the use of linguistic variables is able to present normal
or abnormal behavior patterns in a readable and easy to
comprehend format. The uncertainty and imprecision of
fuzzy sets smoothes the abrupt separation of normal and
abnormal data, thus enhancing the robustness of an IDS.

Methods like ANNs, EC, AISs, and SI, are all developed
with inspiration from nature. Through the “intelligence”
introduced via the biological metaphor, they can infer
behavior patterns from data without prior knowledge of
regularities in these data. The inference is implemented
by either learning or searching. Meanwhile, there remain
differences (see also [65]):
– Structures. All approaches mentioned are composed of

a set of individuals or agents. Individuals are neurons in
ANNs; chromosomes in EC; immune cells or molecules
in AISs; ants and particles in SI. The collection of these
individuals form a network in ANNs; a population in EC;
repertories in AISs; colonies and swarms in SI.

– Performance Evaluation. The performance of indi-
viduals is evaluated. In ANNs, the goal is to minimize
the error between actual and desired outputs; in EC and
SI, the fitness function defines how good an individual
is; in AISs, the goodness of an individual is measured by
the affinity between antibodies and antigens.

– Interactions within the collection Individuals inside
the collection interact with each other. In ANNs, neu-
rons are connected with each other directly. The weights
associated with these connections affect the input to a
neuron. In the other methods, interaction between in-
dividuals is indirect. For example, in AISs, interactions
can be the suppression or stimulation within artificial im-
mune networks, or the comparison of affinities between
detectors in negative selection and in clonal selection; in
SI, ants interact indirectly with pheromone, and particles
interact with neighboring particles.

– Adaptation. All of these methods demonstrate the abil-
ity of adaptation, but in different ways. In EC, adapta-
tion is achieved by evolution. Through crossover and mu-
tation, the genetic composition of an individual can be
changed. Selection weeds out poor individuals and con-
serves fit individuals. As a result, the entire population
will converge to an optimum. Similar selection processes
are at work in negative and clonal selection in AISs. SI
and ANNs achieve adaptation by learning. Weights in
ANNs, pheromones in ACO and positions in PSO are
updated according to feedback from the environment or
from other individuals.
These methods shows strengths and weaknesses. Hence,

soft computing either tightly (hybrid) or loosely (ensemble)
couple them together in a way that they supplement each

32

Table 8
Experiments results of Ensemble Approach conducted by Abraham et al.

[12, 231] [221] [48] [10, 11] Wining Entry [85]

Normal Number of Attribute 41 41 12 12 41

Approach DT+SVM E2 CART DT Ensemble DT

Accuracy 99.7% 99.71% 100% 100% 94.5%

DoS Number of Attribute 41 41 17 12 41

Approach SVM E2 E3 LGP Ensemble DT

Accuracy 99.92% 99.97% 100% 99.96% 97.1%

Probe Number of Attribute 41 41 17 12 41

Approach E1 E2 CART LGP Ensemble DT

Accuracy 100% 99.85% 100% 99.93% 83.3%

U2R Number of Attribute 41 41 19 12 41

Approach DT E2 CART FR2 Ensemble DT

Accuracy 68% 76% 84% 99.64% 13.2%

R2L Number of Attribute 41 41 12 12 41

Approach E1 E2 E3 LGP Ensemble DT

Accuracy 97.16% 100% 99.47% 99.98% 8.4%

other favorably. The resulting synergy has been shown to
be an effective way for building intrusion detection systems
with good accuracy and real-time performance.

In order to have a global picture of research work carried
out under the heading of CI, publication statistics accord-
ing to the year of appearance is given in Figure 27. One
can see clearly that the increasing number of research work
indicates that intrusion detection systems are a growing re-
search area in the computational intelligence field, notably
since 2005. The approaches also exhibit diversity. ANN,
AIS and EC are three main research directions. Consistent
research efforts are shown in these directions each year. In-
vestigation into their applicability to intrusion detection
problems began as early as 1997. Research attention grad-
ually focused on enhancing performance to achieve higher
detection accuracy and lower false alarm rates, while im-
proving capabilities for learning or adaptation to changes
in events or behavior.
From this figure, it becomes easy to note a number of

trends in the surveyed work. The first trend we encounter
is the popularity of EC. Among 193 papers surveyed, 85 are
related to evolutionary computation. Although EC methods
were introduced into IDS as early as 1997, they became
popular only in recent years. There seems to be a decline in
2006 and 2007, but in fact, the practice of EC in these years
merges with fuzzy sets to generate fuzzy classification rules,
research classified to be in the SC category. Besides, EC
plays an important role in other computational intelligence
approaches, such as in negative selection or clonal selection
algorithms from AISs. The PSO algorithm does not belong
to EC, since no reproduction and selection is involved.
The appearance of Swarm Intelligence is another trend.

SI is a pretty new research direction for intrusion detec-
tion problems. It decomposes a hard problem into several
simple sub-problems, assigning agents to work on smaller

sub-problems in parallel, thus making IDSs autonomous,
adaptive, self organizing and cost efficient. Currently, SI
methods are mainly employed to learn classification rules
and clusters. More research work in this area is expected
in the near future.
We also see a trend to applying Soft Computing to

intrusion detection problems. Tightly or loosely assembling
different methods in a cooperative way definitely improves
the performance of an IDS. The most popular combinations
are genetic-fuzzy and genetic-neuro systems. The interest
in integrating fuzzy sets as a part of these solutions is
noticed. In our survey, 23 out of 26 research contributions
in SCs utilize fuzzy sets.
Although some promising results have been achieved

by current computational intelligence approaches to IDSs,
there are still challenges that lie ahead for researchers in this
area. First and foremost, good benchmark datasets for net-
work intrusion detection are needed. The KDD99, and the
DARPA98&99 datasets are main benchmarks used to evalu-
ate the performance of network intrusion detection systems.
However, they are suffering from a fatal drawback: failing
to realistically simulate a real-world network [39, 207, 211].
An IDS working well on these datasets may demonstrate
unacceptable performance in real environments. In order
to validate the evaluation results of an IDS on a simulated
dataset, one has to develop a methodology to quantify the
similarity of simulated and real network traces, see for in-
stance the research conducted by Brugger [38].

These datasets possess some special characteristics, such
as huge volume, high dimension and highly skewed data
distribution. Such features can hardly be found in other
benchmarks, so they have been widely used for another pur-
pose: challenging and evaluating supervised or unsupervised
learning algorithms. However, this purpose is also under
criticism [39]. For instance, i) the DARPA datasets include

33

Fig. 27. Publication statistics according to the year of appearance.

irregularities, such as differences in the TTL for attacks
versus normal traffic, so that even a simplistic IDS could
achieve a good performance [207], ii) the KDD99 training
and testing datasets have dissimilar target hypotheses for
U2R and R2L classes [239]. Hereby, using these datasets
alone is not sufficient to demonstrate the efficiency of a
learning algorithm. Other benchmark datasets are recom-
mended to use as well.

It is also worthwhile to note that the datasets shown in
Table 1 were collected about 10 years ago. Maybe it is time
to produce a new and high-quality dataset for the intrusion
detection task. Such a dataset would also be meaningful
for machine learning tasks in general. When recollecting
data from networks, in addition to storing information
in the header of individual packets, payload information
[18, 51, 283, 285] and temporal locality property [107, 108]
have been proven beneficial.
Secondly, an important aspect of intrusion detection is

the ability of adaptation to constantly changing environ-
ments. Not only the intrusive behavior evolves continuously,
but also the legitimate behavior of users, systems or net-
works shifts over time. If the IDS is not flexible enough to
cope with behavioral changes, detection accuracy will dra-
matically decrease. Although adaptation is an important
issue, only few research has addressed it so far. Recurrent
networks introduced context nodes to remember clues from
the recent past [17, 41, 42, 51, 70, 72, 107]; in AIS, the
lifecycle of immune cells and molecules provides a rolling
coverage of nonself space, which guarantees adaptation
[146, 175]. The Dendritic Cell Algorithm in Danger theory
fulfills adaptation requirements by considering signals from
the environment [127, 128]. A focus on adaptation in IDSs
is highly recommended.

Another challenge to confront in IDS is the huge volume
of audit data that makes it difficult to build an effective IDS.
For example, the widely used KDD99 training benchmark
comprises about 5,000,000 connection records over a 41-
dimensional feature set. Song et al. suggested the combina-
tion of Random Data Subset Selection and Dynamic Data
Subset Selection so that linear genetic programming could

process the data within an acceptable time [253, 254]. A
similar method is to dynamically adjust the weights of data
samples according to classification accuracy, hence chang-
ing the probability of data being selected [4, 229]. Other
researchers have applied divide-and-conquer algorithms to
the dataset. Data that have been classified correctly are re-
moved from the training set. Consequently, the size of the
dataset exposed to the learning algorithm shrinks. Another
good way to exploit this problem is to utilize a distributed
environment. Folin et al. [97] and Abadeh et al. [7] both
examined distributed intrusion detection models, where
each node was only assigned part of the data. An ensemble
method was used to fuse decisions. Although AISs and SI
have properties of self-organization and parallelism, their
application to distributed IDS is not thoroughly examined.

Most of the methods discussed in this survey have their
roots in the field of biology. However, the analogy between
algorithms and their counterpart in biology is still relatively
simple. This survey clearly shows that some researchers
in this field have begun to adopt a more detailed under-
standing of biology to intrusion detection, for instance the
danger theory, swarm intelligence, or advanced topics in
evolutionary computation and artificial neural networks.
It is expected that new discoveries and a deepened under-
standing of biology suitable for the intrusion detection task
will be the subject of future work.

6. Conclusion

Intrusion detection based upon computational intelli-
gence is currently attracting considerable interest from the
research community. Its characteristics, such as adaptation,
fault tolerance, high computational speed and error re-
silience in the face of noisy information, fit the requirement
of building a good intrusion detection system.
This paper presents the state-of-the-art in research

progress of computational intelligence (CI) methods in
intrusion detection systems. The scope of this review was
on core methods in CI, including artificial neural networks,
fuzzy systems, evolutionary computation methods, arti-

34

ficial immune systems, and swarm intelligence. However,
the practice of these methods reveals that each of them
has advantages and disadvantages. Soft computing has
the power to combine the strengths of these methods in
such a way that their disadvantages will be compensated,
thus offering better solutions. We therefore included soft
computing as a topic in this survey. The contributions of
research works in each method are systematically sum-
marized and compared, which allows us to clearly define
existing research challenges, and highlight promising new
research directions. It is hoped that this survey can serve
as a useful guide through the maze of the literature.

7. Acknowledgment

W.B. would like to acknowledge support from NSERC
Discovery Grants, under RGPIN 283304-07.

References
[1] Danger Theory Project Website. Retrieved January 26, 2008, from

http://www.dangertheory.com/.
[2] The KDD99 Dataset. Retrieved January 26, 2008, from http://kdd.

ics.uci.edu/databases/kddcup99/task.html.
[3] Wikipedia. Retrieved January 26, 2008, from http://en.wikipedia.

org/.
[4] M. S. Abadeh and J. Habibi. Computer intrusion detection using

an iterative fuzzy rule learning approach. In IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE ’07), pages 1–6, Lon-
don, UK, 23-26 July 2007. IEEE Press.

[5] M. S. Abadeh, J. Habibi, and S. Aliari. Using a particle swarm
optimization approach for evolutionary fuzzy rule learning: A case
study of intrusion detection. In Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems (IPMU
’06), Paris, France, July 2-7 2006.

[6] M. S. Abadeh, J. Habibi, Z. Barzegar, and M. Sergi. A paral-
lel genetic local search algorithm for intrusion detection in com-
puter networks. Engineering Applications of Artificial Intelli-
gence, 20(8):1058–1069, 2007.

[7] M. S. Abadeh, J. Habibi, and C. Lucas. Intrusion detection using a
fuzzy genetics-based learning algorithm. Journal of Network and
Computer Applications, 30(1):414–428, 2007.

[8] A. Abraham and C. Grosan. Evolving intrusion detection systems.
In N. Nedjah, A. Abraham, and L. de Macedo Mourelle, editors,
Genetic Systems Programming, volume 13 of Studies in Compu-
tational Intelligence, pages 57–79. Springer Berlin / Heidelberg,
2006.

[9] A. Abraham, C. Grosan, and C. Martin-Vide. Evolutionary design
of intrusion detection programs. International Journal of Network
Security, 4(3):328–339, 2007.

[10] A. Abraham and R. Jain. Soft computing models for network intru-
sion detection systems. In S. K. Halgamuge and L. Wang, editors,
Classification and Clustering for Knowledge Discovery, volume 4
of Studies in Computational Intelligence, chapter 13, pages 191–
207. Springer Berlin / Heidelberg, 2005.

[11] A. Abraham, R. Jain, J. Thomas, and S. Y. Han. D-SCIDS: Dis-
tributed soft computing intrusion detection system. Journal of
Network and Computer Applications, 30(1):81–98, 2007.

[12] A. Abraham and J. Thomas. Distributed intrusion detection sys-
tems:a computational intelligence approach. In H. Abbass and
D. Essam, editors, Applications of Information Systems to Home-
land Security and Defense, chapter 5, pages 105–135. Idea Group
Inc, USA, 2005.

[13] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and J. McLeod. Danger
theory: The link between AIS and IDS? In J. Timmis, P. J. Bent-
ley, and E. Hart, editors, Artificial Immune Systems, volume 2787
of Lecture Notes in Computer Science, pages 147–155. Springer
Berlin / Heidelberg, 2003.

[14] U. Aickelin and S. Cayzer. The danger theory and its application
to artificial immune systems. In J. Timmis and P. J. Bentley, ed-
itors, Proceedings of the 1st International Conference on Artifi-
cial Immune Systems (ICARIS ’02), pages 141–148, Canterbury,

UK, 9-11 September 2002. Unversity of Kent at Canterbury Print-
ing Unit.

[15] U. Aickelin and J. Greensmith. Sensing danger: Innate immunology
for intrusion detection. In Information Security Technical Report ,
ISSN 1363-4127 (In Press). ELSEVIER, 2007. Retrieved January
26, 2008, from http://eprints.nottingham.ac.uk/392/.

[16] U. Aickelin, J. Greensmith, and J. Twycross. Immune system ap-
proaches to intrusion detection:a review. In G. Nicosia, V. Cutello,
P. J. Bentley, and J. Timmis, editors, Artificial Immune Systems,
volume 3239 of Lecture Notes in Computer Science, pages 316–
329. Springer Berlin / Heidelberg, 2004.

[17] M. Al-Subaie and M. Zulkernine. The power of temporal pat-
tern processing in anomaly intrusion detection. In IEEE Inter-
national Conference on Communications (ICC ’07), pages 1391–
1398, Glasgow, Scotland, 24-28 June 2007. IEEE Press.

[18] R. Alshammari, S. Sonamthiang, M. Teimouri, and D. Riordan. Us-
ing neuro-fuzzy approach to reduce false positive alerts. In Fifth
Annual Conference on Communication Networks and Services
Research (CNSR ’07), pages 345–349. IEEE Computer Society,
May 2007.

[19] M. Amini and R. Jalili. Network-based intrusion detection using
unsupervised adaptive resonance theory. In Proceedings of the
4th Conference on Engineering of Intelligent Systems (EIS ’04),
Madeira, Portugal, 2004.

[20] M. Amini, R. Jalili, and H. R. Shahriari. RT-UNNID: A practical
solution to real-time network-based intrusion detection using unsu-
pervised neural networks. Computers & Security, 25(6):459–468,
2006.

[21] J. An, G. Yue, F. Yu, and R. Li. Intrusion detection based on fuzzy
neural networks. In J. Wang, ZhangYi, J. M. Zurada, B.-L. Lu, and
H. Yin, editors, Advances in Neural Networks - Third Interna-
tional Symposium on Neural Networks (ISNN ’06), volume 3973
of Lecture Notes in Computer Science, pages 231–239. Springer
Berlin / Heidelberg, 2006.

[22] K. P. Anchor, P. Williams, G. Gunsch, and G. Lamont. The com-
puter defense immune system: current and future research in intru-
sion detection. In D. B. Fogel, M. A. El-Sharkawi, X. Yao, G. Green-
wood, H. Iba, P. Marrow, and M. Shackleton, editors, Proceedings
of the IEEE Congress on Evolutionary Computation (CEC ’02),
volume 2, pages 1027–1032, Honolulu, HI, USA, 12-17 May 2002.
IEEE Press.

[23] M. Ayara, J. Timmis, R. de Lemos, L. N. de Castro, and R. Dun-
can. Negative selection: How to generate detectors. In J. Timmis
and P. J. Bentley, editors, Proceedings of the 1st International
Conference on Artificial Immune Systems (ICARIS ’02), pages
89–98, Canterbury, UK, 9-11 September 2002. Unversity of Kent at
Canterbury Printing Unit.

[24] S. Balachandran. Multi-shaped detector generation using real-
valued representation for anomaly detection. Master’s thesis, The
University of Memphis, Memphis, Tennessee, December 2005.

[25] S. Balachandran, D. Dasgupta, F. Niño, and D. Garrett. A gen-
eral framework for evolving multi-shaped detectors in negative se-
lection. In IEEE Symposium on Foundations of Computational
Intelligence (FOCI ’07), pages 401–408, Honolulu, HI, USA, 1-5
April 2007. IEEE Computer Society.

[26] S. Balachandran, D. Dasgupta, and L. Wang. A hybrid approach for
misbehavior detection in wireless ad-hoc networks. In Symposium
on Information Assurance, New York, USA, 14-15 June 2006.

[27] B. Balajinath and S. V. Raghavan. Intrusion detection
through learning behavior model. Computer Communications,
24(12):1202–1212, 2001.

[28] J. Balthrop, F. Esponda, S. Forrest, and M. Glickman. Coverage
and generalization in an artificial immune system. In W. B. L. et al.,
editor, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’02), pages 3–10, New York, USA, 9-13 July
2002. Morgan Kaufmann.

[29] J. Balthrop, S. Forrest, and M. R. Glickman. Revisiting LISYS: Pa-
rameters and normal behavior. In D. B. Fogel, M. A. El-Sharkawi,
X. Yao, G. Greenwood, H. Iba, P. Marrow, and M. Shackleton, edi-
tors, Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC ’02), volume 2, pages 1045–1050, Honolulu, HI, USA,
12-17 May 2002. IEEE Press.

[30] S. Banerjee, C. Grosan, and A. Abraham. IDEAS: intrusion de-
tection based on emotional ants for sensors. In Proceedings of
5th International Conference on Intelligent Systems Design and
Applications (ISDA ’05), pages 344–349, Wroclaw, Poland, 8-10
September 2005. IEEE Computer Society, Washington, DC, USA.

[31] S. Banerjee, C. Grosan, A. Abraham, and P. Mahanti. Intru-
sion detection on sensor networks using emotional ants. Interna-
tional Journal of Applied Science and Computations, 12(3):152–
173, 2005.

[32] Z. Bankovic, D. Stepanovic, S. Bojanica, and O. Nieto-Taladriz. Im-
proving network security using genetic algorithm approach. Com-
puters & Electrical Engineering, 33(5-6):438–451, 2007. Security
of Computers & Networks.

35

http://www.dangertheory.com/
http://kdd.ics.uci.edu/databases/kddcup99/task.html
http://kdd.ics.uci.edu/databases/kddcup99/task.html
http://en.wikipedia.org/
http://en.wikipedia.org/
http://eprints.nottingham.ac.uk/392/

[33] P. J. Bentley, J. Greensmith, and S. Ujjin. Two ways to grow tis-
sue for artificial immune systems. In C. Jacob, M. L. Pilat, P. J.
Bentley, and J. Timmis, editors, Artificial Immune Systems, vol-
ume 3627 of Lecture Notes in Computer Science, pages 139–152.
Springer Berlin/Heidelberg, 2005.

[34] J. C. Bezdek. What is computational intelligence? Computational
Intelligence Imitating Life, pages 1–12, 1994. IEEE Press, New
York.

[35] A. Bivens, C. Palagiri, R. Smith, B. Szymanski, and M. Embrechts.
Networkbased intrusion detection using neural networks. Intel-
ligent Engineering Systems through Artificial Neural Networks,
12(1):579–584, 2002.

[36] S. M. Bridges and R. B. Vaughn. Fuzzy data mining and genetic
algorithms applied to intrusion detection. In Proceedings of the
23rd National Information Systems Security Conference, pages
13–31, Baltimore, MA, USA, 16-19 October 2000.

[37] S. M. Bridges and R. B. Vaughn. Intrusion detection via fuzzy data
mining. In Proceedings of the 12 thAnnual Canadian Information
Technology Security Symposium, pages 111–121, 2000.

[38] S. T. Brugger. The quantitative comparison of ip networks. Tech-
nical report, University of California, Davis, 2007. Retrieved
January 26, 2008, from http://bruggerink.com/~zow/GradSchool/
brugger_netcompare_thesis.pdf.

[39] T. Brugger. KDD cup ’99 dataset (network intrusion) considered
harmful, 15 Sep 2007. Retrieved January 26, 2008, from http://
www.kdnuggets.com/news/2007/n18/4i.html.

[40] J. Cannady. Artificial neural networks for misuse detection. In
Proceedings of the 21st National Information Systems Security
Conference, pages 368–381, Arlington, VA, USA, 5-8 October 1998.

[41] J. Cannady. Applying CMAC-based on-line learning to intrusion
detection. In Proceedings of the IEEE-INNS-ENNS International
Joint Conference on Neural Networks (IJCNN ’00), volume 5,
pages 405–410, Como, Italy, 24-27 July 2000. IEEE Press.

[42] J. Cannady. Next generation intrusion detection: Autonomous rein-
forcement learning of network attacks. In Proceedings of the 23rd
National Information Systems Security Conference, pages 1–12,
Baltimore, MA, USA, 16-19 October 2000.

[43] J. Cannady and J. Mahaffey. The application of artificial neural
networks to misuse detection: Initial results. In Proceedings of the
1st International Workshop on Recent Advances in Intrusion De-
tection (RAID 98), Louvain-la-Neuve, Belgium, 14-16 September
1998.

[44] S. Cayzer and J. Smith. Gene libraries: Coverage, efficiency and
diversity. In H. Bersini and J. Carneiro, editors, Artificial Im-
mune Systems, volume 4163 of Lecture Notes in Computer Sci-
ence, pages 136–149. Springer Berlin/Heidelberg, 2006.

[45] S. Cayzer, J. Smith, J. A. Marshall, and T. Kovacs. What have
gene libraries done for AIS? In C. Jacob, M. L. Pilat, P. J. Bent-
ley, and J. Timmis, editors, Artificial Immune Systems, volume
3627 of Lecture Notes in Computer Science, pages 86–99. Springer
Berlin/Heidelberg, 2005.

[46] A. P. F. Chan, W. W. Y. Ng, D. S. Yeung, and E. C. C. Tsang.
Comparison of different fusion approaches for network intrusion de-
tection using ensemble of RBFNN. In Proceedings of 2005 Inter-
national Conference on Machine Learning and Cybernetics, vol-
ume 6, pages 3846–3851. IEEE Press, 18-21 Aug. 2005.

[47] S. Chavan, K. Shah, N. Dave, S. Mukherjee, A. Abraham, and
S. Sanyal. Adaptive neuro-fuzzy intrusion detection systems. In
IEEE International Conference on Information Technology: Cod-
ing and Computing (ITCC’04), volume 1, pages 70–74. IEEE Com-
puter Society, 2004.

[48] S. Chebrolu, A. Abraham, and J. P. Thomas. Feature deduction
and ensemble design of intrusion detection systems. Computers &
Security, 24(4):295–307, 2005.

[49] G. Chen, Q. Chen, and W. Guo. A PSO-based approach to rule
learning in network intrusion detection. In B.-Y. Cao, editor, Fuzzy
Information and Engineering, volume 40 of Advances in Soft
Computing, pages 666–673. Springer Berlin / Heidelberg, 2007.

[50] Y. Chen, J. Zhou, and A. Abraham. Estimation of distribution
algorithm for optimization of neural networks for intrusion detec-
tion system. In L. Rutkowski, R. Tadeusiewicz, L. A. Zadeh, and
J. Zurada, editors, The 8th International Conference on Artificial
Intelligence and Soft Computing (ICAISC ’06), volume 4029 of
Lecture Notes in Computer Science, pages 9–18. Springer Berlin /
Heidelberg, 2006.

[51] E. Cheng, H. Jin, Z. Han, and J. Sun. Network-based anomaly
detection using an elman network. In X. Lu and W. Zhao, editors,
Networking and Mobile Computing, volume 3619 of Lecture Notes
in Computer Science, pages 471–480. Springer Berlin / Heidelberg,
2005.

[52] W. Chimphlee, A. H. Abdullah, M. N. M. Sap, S. Chimphlee, and
S. Srinoy. Unsupervised clustering methods for identifying rare
events in anomaly detection. In 6 th Internation Enformatika
Conference (IEC ’05), 26-28 October 2005.

[53] W. Chimphlee, A. H. Abdullah, M. N. M. Sap, S. Srinoy, and

S. Chimphlee. Anomaly-based intrusion detection using fuzzy
rough clustering. In International Conference on Hybrid Infor-
mation Technology (ICHIT ’06), volume 1, pages 329–334, 2006.

[54] W. Chimphlee, M. N. M. Sap, A. H. Abdullah, S. Chimphlee, and
S. Srinoy. To identify suspicious activity in anomaly detection
based on soft computing. In Proceedings of the 24th IASTED in-
ternational conference on Artificial intelligence and applications,
pages 359–364, Innsbruck, Austria, 2006.

[55] A. Chittur. Model generation for an intrusion detection system
using genetic algorithms. Technical report, High School Honors
Thesis, Ossining High School. In cooperation with Columbia Univ.,
2002.

[56] S.-B. Cho. Incorporating soft computing techniques into a prob-
abilistic intrusion detection system. IEEE Transactions on Sys-
tems, Man and Cybernetics - Part C: Applications and Reviews,
32(2):154–160, 2002.

[57] B. Craenen and A. Eiben. Computational intelligence. Encyclope-
dia of Life Support Sciences, EOLSS; EOLSS Co. Ltd., 2002.

[58] M. Crosbie and E. H. Spafford. Applying genetic programming to
intrusion detection. In E. V. Siegel and J. R. Koza, editors, Work-
ing Notes for the AAAI Symposium on Genetic Programming,
pages 1–8, MIT, Cambridge, MA, USA, 10-12 Nov. 1995. AAAI.

[59] H. H. Dam, K. Shafi, and H. A. Abbass. Can evolutionary compu-
tation handle large dataset? In S. Zhang and R. Jarvis, editors, AI
2005: Advances in Artificial Intelligence- 18th Australian Joint
Conference on Artificial Intelligence, Sydney, Australia, 5-9 De-
cember, 2005, volume 3809 of Lecture notes in computer science,
pages 1092–1095. Springer Berlin / Heidelberg, 2005.

[60] D. Dasgupta. Immunity-based intrusion detection system: A gen-
eral framework. In Proceedings of the 22nd National Information
Systems Security Conference, pages 147–160, Arlington, VA, USA,
18-21 October 1999.

[61] D. Dasgupta. Advances in artificial immune systems. IEEE Com-
putational Intelligence Magazine, 1(4):40–49, 2006.

[62] D. Dasgupta and F. Gonzalez. An immunity-based technique to
characterize intrusions in computer networks. IEEE Transactions
on Evolutionary Computation, 6(3):281–291, 2002.

[63] D. Dasgupta, S. Yu, and N. Majumdar. MILA-multilevel immune
learning algorithm and its application to anomaly detection. Soft
Computing Journal, 9(3):172–184, 2005.

[64] M. Dass. LIDS: A learning intrusion detection system. Master of
science, The University of Georgia, Athens, Georgia, 2003.

[65] L. N. de Castro. Immune, swarm, and evolutionary algorithms,
part II: Philosophical comparisons. In L. Wang, J. C. Rajapakse,
K. Fukushima, S.-Y. Lee, and X. Yao, editors, Proceedings of
the International Conference on Neural Information Processing
(ICONIP ’02), Workshop on Artificial Immune Systems, vol-
ume 3, pages 1469–1473. IEEE Press, 18-22 Nov. 2002.

[66] L. N. de Castro and J. I. Timmis. An artificial immune network
for multimodal function optimization. In D. B. Fogel, M. A. El-
Sharkawi, X. Yao, G. Greenwood, H. Iba, P. Marrow, and M. Shack-
leton, editors, Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’02), volume 1, pages 699–674, Honolulu, HI,
USA, 12-17 May 2002. IEEE Press.

[67] L. N. de Castro and J. I. Timmis. Artificial immune systems as
a novel soft computing paradigm. Soft Computing, 7(8):526–544,
2003.

[68] L. N. de Castro and F. J. V. Zuben. Artificial immune systems:
Part I - basic theory and applications. Technical Report TR - DCA
01/99, The Catholic University of Santos, Brazil, December 1999.

[69] L. N. de Castro and F. J. V. Zuben. Learning and optimization
using the clonal selection principle. IEEE Transactions on Evo-
lutionary Computation, Special Issue on Artificial Immune Sys-
tems, 6(3):239–251, 2002.

[70] H. Debar, M. Becker, and D. Siboni. A neural network compo-
nent for an intrusion detection system. In Proceedings of 1992
IEEE Computer Society Symposium on Research in Security and
Privacy, pages 240–250, Oakland, CA, USA, 4-6 May 1992. IEEE
Press.

[71] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of
intrusion-detection systems. Computer Networks, 31(8):805–822,
1999.

[72] H. Debar and B. Dorizzi. An application of a recurrent network
to an intrusion detection system. In Proceeding of the Interna-
tional Joint Conference on Neural Networks (IJCNN 92), vol-
ume 2, pages 478–483. IEEE Computer Society, 7-11 June 1992.

[73] J. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain,
and L. Chretien. The dynamics of collective sorting: Robot-like
ants and ant-like robots. In J. A. Meyer and S. Wilson, editors, Pro-
ceedings of the First International Conference on Simulation of
Adaptive Behaviour: From Animals to Animats, volume 1, pages
356–365. MIT Press, Cambridge, MA, USA, 1991.

[74] D. E. Denning. An intrusion detection model. IEEE Transactions
on Software Engineering, Special issue on computer security and
privacy, 13(2):222–232, 1987.

36

http://bruggerink.com/~zow/GradSchool/brugger_netcompare_thesis.pdf
http://bruggerink.com/~zow/GradSchool/brugger_netcompare_thesis.pdf
http://www.kdnuggets.com/news/2007/n18/4i.html
http://www.kdnuggets.com/news/2007/n18/4i.html

[75] P. Dhaeseleer, S. Forrest, and P. Helman. An immunological ap-
proach to change detection: Algorithms, analysis and implications.
In Proceedings of 1996 IEEE Symposium onSecurity and Privacy,
pages 110–119, Oakland, CA, USA, 6-8 May 1996. IEEE Computer
Society.

[76] P. A. Diaz-Gomez and D. F. Hougen. Analysis and mathematical
justification of a fitness function used in an intrusion detection
system. In H.-G. Beyer and U.-M. O’Reilly, editors, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO
’05), pages 1591–1592, Washington, D.C., USA, 25-29 June 2005.
ACM.

[77] P. A. Diaz-Gomez and D. F. Hougen. Analysis of an off-line intru-
sion detection system:a case study in multi-objective genetic algo-
rithms. In I. Russell and Z. Markov, editors, Proceedings of the
Eighteenth International Florida Artificial Intelligence Research
Society Conference, pages 822–823, Clearwater Beach, FL, USA,
2005. AAAI Press.

[78] P. A. Diaz-Gomez and D. F. Hougen. Improved off-line intrusion
detection using a genetic algorithm. In Proceedings of the Sev-
enth International Conference on Enterprise Information Sys-
tems, pages 66–73, 2005.

[79] P. A. Diaz-Gomez and D. F. Hougen. A genetic algorithm approach
for doing misuse detection in audit trail files. In The 15th Interna-
tional Conference on Computing (CIC ’06), pages 329–338. IEEE
Computer Society, Nov. 2006.

[80] J. E. Dickerson and J. A. Dickerson. Fuzzy network profiling for in-
trusion detection. In Proceedings of the 19th International Confer-
ence of the North American Fuzzy Information Society (NAFIPS
’00), pages 301–306, Atlanta, GA, USA, 13-15 July 2000. IEEE
Press.

[81] J. E. Dickerson, J. Juslin, O. Koukousoula, and J. A. Dickerson.
Fuzzy intrusion detection. In Proceedings of the 20th Interna-
tional Conference of the North American Fuzzy Information So-
ciety (NAFIPS ’01) and Joint the 9th IFSA World Congress,
volume 3, pages 1506–1510, Vancouver, Canada, 25-28 July 2001.
IEEE Press.

[82] W. Duch. What is computational intelligence and where is it go-
ing? In W. Duch and J. Mańdziuk, editors, Challenges for Com-
putational Intelligence, volume 63 of Studies in Computational
Intelligence, pages 1–13. Springer Berlin / Heidelberg, 2007.

[83] N. A. Durgin and P. Zhang. Profile-based adaptive anomaly detec-
tion for network security. Technical report, Sandia National Labo-
ratories, 2005.

[84] A. El-Semary, J. Edmonds, J. Gonzalez, and M. Papa. A framework
for hybrid fuzzy logic intrusion detection systems. In The 14th
IEEE International Conference on Fuzzy Systems (FUZZ ’05),
pages 325–330, Reno, NV, USA, 25-25 May 2005. IEEE Press.

[85] C. Elkan. Results of the KDD ’99 classifier learning. ACM
SIGKDD Explorations Newsletter, 1:63–64, 2000.

[86] F. Esponda, S. Forrest, and P. Helman. The crossover closure and
partial match detection. In J. Timmis, P. J. Bentley, and E. Hart,
editors, Artificial Immune Systems, volume 2787 of Lecture Notes
in Computer Science, pages 249–260. Springer Berlin / Heidelberg,
2003.

[87] F. Esponda, S. Forrest, and P. Helman. A formal framework for
positive and negative detection schemes. IEEE Transactions on
Systems, Man and Cybernetics - Part B: Cybernetics, 34(1):357–
373, 2004.

[88] W. Fan, M. Miller, S. Stolfo, W. Lee, and P. Chan. Using artifi-
cial anomalies to detect unknown and known network intrusions.
Knowledge and Information Systems, 6(5):507–527, 2004.

[89] K. Faraoun and A. Boukelif. Genetic programming approach for
multi-category pattern classification applied to network intrusions
detection. International Journal Of Computational Intelligence
And Applications, 3(1):77–90, 2006.

[90] Y. Feng, Z. Wu, K. Wu, Z. Xiong, and Y. Zhou. An unsuper-
vised anomaly intrusion detection algorithm based on swarm intel-
ligence. In Proceedings of 2005 International Conference on Ma-
chine Learning and Cybernetics, volume 7, pages 3965–3969. IEEE
Computer Society, 18-21 Aug. 2005.

[91] Y. Feng, J. Zhong, Z. Xiong, C. xiao Ye, and K. gui Wu. Network
anomaly detection based on dsom and aco clustering. In D. Liu,
S. Fei, Z. Hou, H. Zhang, and C. Sun, editors, Advances in Neural
Networks (ISNN 2007), volume 4492 of Lecture Notes in Com-
puter Science, pages 947–955. Springer Berlin / Heidelberg, 2007.

[92] Y. Feng, J. Zhong, C. Ye, and Z. Wu. Clustering based on self-
organizing ant colony networks with application to intrusion detec-
tion. In S. Ceballos, editor, Proceedings of 6th International Con-
ference on Intelligent Systems Design and Applications (ISDA
’06), volume 6, pages 3871– 3875, Jinan, China, 16-18 October 2006.
IEEE Computer Society, Washington, D.C., USA.

[93] C. Ferreira. Gene expression programming: A new adaptive algo-
rithm for solving problems. Complex Systems, 13(2):87–129, 2001.

[94] G. Florez, S. M. Bridges, and R. B. Vaughn. An improved algorithm
for fuzzy data mining for intrusion detection. In Proceedings of

the 21st International Conference of the North American Fuzzy
Information Society (NAFIPS ’02), pages 457–462, New Orleans,
LA, USA, June 27-29 2002. IEEE Press.

[95] D. B. Fogel. What is evolutionary computation? IEEE Spectrum,
37(2):26, 28–32, 2000.

[96] G. Folino, C. Pizzuti, and G. Spezzano. An evolutionary ensem-
ble approach for distributed intrusion detection. In International
Conference on Artificial Evolution (EA ’05), University of Lille,
France., 26-28 October 2005.

[97] G. Folino, C. Pizzuti, and G. Spezzano. GP ensemble for dis-
tributed intrusion detection systems. In S. Singh, M. Singh,
C. Apté, and P. Perner, editors, Pattern Recognition and Data
Mining, Third International Conference on Advances in Pattern
Recognition (ICAPR ’05), Bath, UK, August 22-25, 2005, Pro-
ceedings, Part I, volume 3686 of Lecture Notes in Computer Sci-
ence, pages 54–62. Springer Berlin / Heidelberg, 2005.

[98] S. Forrest and C. Beauchemin. Computer immunology. Immuno-
logical Reviews, 216(1):176–197, 2007.

[99] S. Forrest, S. Hofmeyr, and A. Somayaji. Computer immunology.
Communications of the ACM, 40(10):88–96, 1997.

[100] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of
self for Unix processes. In Proceedings of the 1996 IEEE Sympo-
sium on Security and Privacy, pages 120–128, Los Alamitos, CA,
USA, 1996. IEEE Computer Society Press.

[101] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-nonself
discrimination in a computer. In Proceedings of 1994 IEEE Com-
puter Society Symposium on Research in Security and Privacy,
pages 202–212, Oakland, CA, USA, 16-18 May 1994. IEEE Press.

[102] S. Forrest, R. Smith, B. Javornik, and A. Perelson. Using genetic
algorithms to explore pattern recognition in the immune system.
Evolutionary Computation, 1(3):191–211, 1993. MIT Press Cam-
bridge, MA, USA.

[103] K. Fox, R. Henning, and J. Reed. A neural network approach
toward intrusion detection. In Proceedings of the 13th National
Computer Security Conference, volume 1, pages 124–134, Wash-
ington, D.C., USA, 1-4 Oct. 1990.

[104] A. A. Freitas and J. Timmis. Revisiting the foundations of artificial
immune systems: A problem-oriented perspective. In J. Timmis,
P. J. Bentley, and E. Hart, editors, Artificial Immune Systems,
volume 2787 of Lecture Notes in Computer Science, pages 229–
241. Springer Berlin / Heidelberg, 2003.

[105] J. C. Galeano, A. Veloza-Suan, and F. A. González. A compara-
tive analysis of artificial immune network models. In H.-G. Beyer
and U.-M. O’Reilly, editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO ’05), pages 361–368,
Washington, D.C., USA, 25-29 June 2005. ACM.

[106] S. M. Garrett. How do we evaluate artificial immune systems?
Evolutionary Computation, 13(2):145–177, 2005.

[107] A. K. Ghosh, C. Michael, and M. Schatz. A real-time intrusion
detection system based on learning program behavior. In H. De-
bar, L. Mé, and S. F. Wu, editors, Proceedings of the 3rd Inter-
national Workshop on Recent Advances in Intrusion Detection
(RAID ’00), Toulouse, France, 2-4 October, 2000, volume 1907 of
Lecture Notes in Computer Science, pages 93–109. Springer Berlin
/ Heidelberg, 2000.

[108] A. K. Ghosh and A. Schwartzbard. A study in using neural net-
works for anomaly and misuse detection. In Proceedings of the 8th
USENIX Security Symposium, volume 8, pages 141–152, Washing-
ton, D.C., USA, 23-36 August 1999.

[109] A. K. Ghosh, J. Wanken, and F. Charron. Detecting anomalous
and unknown intrusions against programs. In Proceedings of the
14th Annual Computer Security Applications Conference (AC-
SAC ’98), pages 259–267, Phoenix, AZ, USA, 7-11 December 1998.
IEEE Computer Society.

[110] A. Giordana, F. Neri, and L. Saitta. Search-intensive concept in-
duction. Evolutionary Computation, 3(4):375–416, 1995.

[111] L. Girardin. An eye on network intruder-administrator shootouts.
In Proceedings of the 1st USENIX Workshop on Intrusion De-
tection and Network Monitoring, pages 19–28, Santa Clara, CA,
USA, 9-12 April 1999. USENIX Association, Berkeley, CA, USA.

[112] M. Glickman, J. Balthrop, and S. Forrest. A machine learning eval-
uation of an artificial immune system. Evolutionary Computation,
13(2):179–212, 2005.

[113] J. Gómez and D. Dasgupta. Complete expression trees for evolving
fuzzy classifier systems with genetic algorithms and application to
network intrusion detection. In Proceedings of the 21st Interna-
tional Conference of the North American Fuzzy Information So-
ciety (NAFIPS ’02), pages 469–474, New Orleans, LA, USA, June
27-29 2002. IEEE Press.

[114] J. Gómez and D. Dasgupta. Evolving fuzzy classifiers for intrusion
detection. In Proceedings of the 2002 IEEE Workshop on Infor-
mation Assurance, United States Military Academy, West Point,
NY, USA, June 2002. IEEE Press.

[115] J. Gómez, F. GonzAlez, and D. Dasgupta. An immuno-fuzzy ap-
proach to anomaly detection. In The 12th IEEE International

37

Conference on Fuzzy Systems (FUZZ ’03), volume 2, pages 1219–
1224, St.Louis, MO, USA, 25-28 May 2003. IEEE Press.

[116] M. Gong, H. Du, L. Jiao, and L. Wang. Immune clonal selec-
tion algorithm for multiuser detection in DS-CDMA systems. In
G. I.Webb and XinghuoYu, editors, AI 2004: Advances in Artifi-
cial Intelligence, volume 3339 of Lecture Notes in Computer Sci-
ence, pages 1219–1225. Springer Berlin / Heidelberg, 2004.

[117] R. H. Gong, M. Zulkernine, and P. Abolmaesumi. A software
implementation of a genetic algorithm based approach to net-
work intrusion detection. In The sixth International Confer-
ence on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, 2005 and the First ACIS
International Workshop on Self-Assembling Wireless Networks
(SNPD/SAWN ’05), pages 246 – 253. IEEE Computer Society
Washington, D.C., USA, 2005.

[118] F. González. A Study of Artificial Immune Systems Applied to
Anomaly Detection. PhD thesis, The University of Memphis, 2003.

[119] F. González and D. Dasgupta. Anomaly detection using real-valued
negative selection. Genetic Programming and Evolvable Machines,
4(4):383–403, 2003.

[120] F. González, D. Dasgupta, and J. Gomez. The effect of binary
matching rules in negative selection. In E. C.-P. et al., editor, Pro-
ceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO ’03), Part I, Chicago, IL, USA, 12-16 July, 2003,
volume 2723 of Lecture Notes in Computer Science, pages 195–
206. Springer Berlin / Heidelberg, 2003.

[121] F. González, D. Dasgupta, and R. Kozma. Combining negative
selection and classification techniques foranomaly detection. In
D. B. Fogel, M. A. El-Sharkawi, X. Yao, G. Greenwood, H. Iba,
P. Marrow, and M. Shackleton, editors, Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’02), volume 1,
pages 705–710, Honolulu, HI, USA, 12-17 May 2002. IEEE Press.

[122] F. González, D. Dasgupta, and L. F. Niño. A randomized real-
valued negative selection algorithm. In J. Timmis, P. J. Bentley,
and E. Hart, editors, Proceedings of the 2nd International Con-
ference on Artificial Immune Systems (ICARIS ’03), Edinburgh,
UK, 1-3 September, 2003, volume 2787 of Lecture Notes in Com-
puter Science, pages 261–272. Springer Berlin / Heidelberg, 2003.

[123] F. González, J. Gómez, M. Kaniganti, and D. Dasgupta. An evo-
lutionary approach to generate fuzzy anomaly signatures. In Pro-
ceedings of the 4th Annual IEEE Systems, Man and Cybernetics
Society Information Assurance Workshop, pages 251–259, West
Point, NY, USA, 18-20 June 2003. IEEE Press.

[124] L. J. González and J. Cannady. A self-adaptive negative selec-
tion approach for anomaly detection. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’04), volume 2,
pages 1561–1568, Portland, OR, USA, 19-23 June 2004. IEEE
Press.

[125] J. Greensmith and U. Aickelin. Dendritic cells for real-time
anomaly detection. In Proceedings of the Workshop on Artifi-
cial Immune Systems and Immune System Modelling (AISB ’06),
pages 7–8, Bristol, UK, 2006.

[126] J. Greensmith and U. Aickelin. Dendritic cells for syn scan detec-
tion. In H. Lipson, editor, Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO ’07), pages 49–56,
London, England, UK, 7-11July 2007. ACM.

[127] J. Greensmith, U. Aickelin, and S. Cayzer. Introducing dendritic
cells as a novel immune-inspired algorithm for anomaly detection.
In C. Jacob, M. L. Pilat, P. J. Bentley, and J. Timmis, editors,
Proceedings of the 4th International Conference on Artificial Im-
mune Systems (ICARIS ’05), Banff, Alberta, CA, 14-17 August,
2005, volume 3627 of Lecture Notes in Computer Science, pages
153–167. Springer Berlin / Heidelberg, 2005.

[128] J. Greensmith, U. Aickelin, and G. Tedesco. Information fusion for
anomaly detection with the dendritic cell algorithm. Information
Fusion, in print. Retrieved January 26, 2008, from http://eprints.
nottingham.ac.uk/570/, 2007.

[129] J. Greensmith, U. Aickelin, and J. Twycross. Detecting danger:
Applying a novel immunological concept to intrusion detection sys-
tems. In 6th International Conference in Adaptive Computing in
Design and Manufacture (ACDM ’04), Bristol, UK, 2004.

[130] J. Greensmith, J. Twycross, and U. Aickelin. Dendritic cells for
anomaly detection. In G. G. Y. et al., editor, Proceedings of the
IEEE Congress on Evolutionary Computation (CEC ’06), pages
664–671, Vancouver, Canada, 16-21 July 2006. IEEE Press.

[131] C. Grosan, A. Abraham, and S. Y. Han. Mepids: Multi-expression
programming for intrusion detection system. In J. Mira and J. Al-
varez, editors, International Work-conference on the Interplay
between Natural and Artificial Computation (IWINAC’05), vol-
ume 3562 of Lecture Notes in Computer Science, pages 163–172.
Springer Verlag, Germany, Spain, 2005.

[132] C. R. Haag, G. B. Lamont, P. D. Williams, and G. L. Peterson. An
artificial immune system-inspired multiobjective evolutionary algo-
rithm with application to the detection of distributed computer
network intrusions. In D. Thierens, editor, Proceedings of the Ge-

netic and Evolutionary Computation Conference (GECCO ’07),
pages 2717–2724, London, England, UK, 7-11July 2007. ACM.

[133] S. J. Han and S. B. Cho. Evolutionary neural networks for anomaly
detection based on the behavior of a program. IEEE Transactions
On Systems, Man, And Cybernetics, part B, 36(3):559–570, 2006.

[134] J. Handl, J. Knowles, and M. Dorigo. Strategies for the increased
robustness of ant-based clustering. In G. D. M. Serugendo, A. Kara-
georgos, O. F. Rana, and F. Zambonelli, editors, Engineering Self-
Organising Systems, volume 2977 of Lecture Notes in Computer
Science, pages 90–104. Springer Berlin / Heidelberg, 2004.

[135] X. Hang and H. Dai. Constructing detectors in schema complemen-
tary space for anomaly detection. In K. D. et al., editor, Proceed-
ings of the Genetic and Evolutionary Computation Conference
(GECCO ’04), Part I, Seattle, WA, USA, 26-30 June, 2004, vol-
ume 3102 of Lecture Notes in Computer Science, pages 275–286.
Springer Berlin / Heidelberg, 2004.

[136] X. Hang and H. Dai. An extended negative selection algorithm for
anomaly detection. In H. Dai, R. Srikant, C. Zhang, and N. Cer-
cone, editors, Advances in Knowledge Discovery and Data Min-
ing, volume 3056 of Lecture Notes in Computer Science, pages
245–254. Springer Berlin / Heidelberg, 2004.

[137] X. Hang and H. Dai. Applying both positive and negative selec-
tion to supervised learning for anomaly detection. In H.-G. Beyer
and U.-M. O’Reilly, editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECOO ’05), pages 345–352,
Washington, D.C., USA, 25-29 June 2005. ACM.

[138] J. V. Hansen, P. B. Lowry, R. D. Meservy, and D. M. McDonald.
Genetic programming for prevention of cyberterrorism through dy-
namic and evolving intrusion detection. Decision Support System,
43(4):1362–1374, 2007.

[139] P. K. Harmer. A distributed agent architecture of a computer virus
immune system. Master’s thesis, Air Force Institute of Technology,
Air University, March 2000.

[140] P. K. Harmer, P. D. Williams, G. H. Gunsch, and G. B. Lam-
ont. An artificial immune system architecture for computer security
applications. IEEE Transactions on Evolutionary Computation,
6(3):252–280, 2002.

[141] H. He, X. Luo, and B. Liu. Detecting anomalous network traf-
fic with combined fuzzy-based approaches. In D.-S. Huang, X.-P.
Zhang, and G.-B. Huang, editors, Advances in Intelligent Com-
puting, volume 3645 of Lecture Notes in Computer Science, pages
433–442. Springer Berlin / Heidelberg, 2005.

[142] J. He, D. Long, and C. Chen. An improved ant-based classifier
for intrusion detection. In The 3nd International Conference on
Natural Computation (ICNC ’07), volume 4, pages 819–823. IEEE
Press, 24-27 Aug. 2007.

[143] A. Hofmann, C. Schmitz, and B. Sick. Intrusion detection in com-
puter networks with neural and fuzzy classifiers. In O. Kaynak,
E. Alpaydin, E. Oja, and L. Xu, editors, Artificial Neural Networks
and Neural Information Processing (ICANN/ICONIP ’03), vol-
ume 2714 of Lecture Notes in Computer Science, pages 316–324.
Springer Berlin / Heidelberg, 2003.

[144] A. Hofmann, C. Schmitz, and B. Sick. Rule extraction from neural
networks for intrusion detection in computer networks. In IEEE
International Conference on Systems, Man and Cybernetics, vol-
ume 2, pages 1259–1265. IEEE Press, 5-8 Oct. 2003.

[145] S. Hofmeyr and S. Forrest. Immunity by design: An artificial im-
mune system. In W.Banzhaf, J.Daida, A.E.Eiben, M.H.Garzon,
V.Honavar, M.Jakiela, and R.E.Smith, editors, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO
99), pages 1289–1296, Orlando, FL, USA, 13-17 July 1999. Morgan
Kaufmann.

[146] S. A. Hofmeyr. An Immunological Model of Distributed Detec-
tion and Its Application to Computer Security. PhD thesis, The
University of New Mexico, 1999.

[147] A. J. Hoglund, K. Hatonen, and A. S. Sorvari. A computer
host-based user anomaly detction system using the self-organizing
map. In Proceedings of the IEEE-INNS-ENNS International
Joint Conference on Neural Networks (IJCNN ’00), volume 5,
pages 411–416, Como, Italy, 24-27 July 2000. IEEE Press.

[148] J. H. Holland. Adaptation in Natural and Artificial Systems. Uni-
versity of Michican Press, Cambridge, MA, USA, 1975. ISBN-10:
0262581116.

[149] J. Horn and D. E. Goldberg. Natural niching for evolving cooper-
ative classifiers. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and
R. L. Riolo, editors, Proceedings of the 1st Annual Conference on
Genetic Programming, pages 553–564, Cambrige, MA, USA, 1996.
The Mit Press.

[150] N. Jerne. Towards a network theory of the immune system. Ann
Immunol (Paris), 125(1-2):373–389, 1974.

[151] Z. Ji. A boundary-aware negative selection algorithm. In A. del
Pobil, editor, In Proceedings of the 9th IASTED International
Conference on Artificial Intelligence and Soft Computing, pages
481–146, Benidorm, Spain, 12-14 September 2005. ACTA Press.

[152] Z. Ji. Negative Selection Algorithms: from the Thymus to V-

38

http://eprints.nottingham.ac.uk/570/
http://eprints.nottingham.ac.uk/570/

detector. PhD thesis, Computer Science, The University of Mem-
phis, August 2006.

[153] Z. Ji and D. Dasgupta. Artificial immune system (AIS) research
in the last five years. In T. Gedeon, editor, Proceedings of the
IEEE Congress on Evolutionary Computation (CEC ’03), vol-
ume 1, pages 123– 130, Canberra, Australia, 8-12 December 2003.
IEEE Press.

[154] Z. Ji and D. Dasgupta. Augmented negative selection algorithm
with variable-coverage detectors. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’04), volume 1,
pages 1081–1088, Portland, OR, USA, 19-23 June 2004. IEEE
Press.

[155] Z. Ji and D. Dasgupta. Real-valued negative selection using
variable-sized detectors. In K. D. et al., editor, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO
’04), Part I, Seattle, WA, USA, 26-30 June, 2004, volume 3102
of Lecture Notes in Computer Science, pages 287–298. Springer
Berlin / Heidelberg, 2004.

[156] Z. Ji and D. Dasgupta. Estimating the detector coverage in a neg-
ative selection algorithm. In H.-G. Beyer and U.-M. O’Reilly, edi-
tors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’05), pages 281–288, Washington, D.C., USA,
25-29 June 2005. ACM.

[157] Z. Ji and D. Dasgupta. Applicability issues of the real-valued neg-
ative selection algorithms. In M. Cattolico, editor, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO
’06), pages 111–118, Seattle, WA, USA, 8-12 July 2006. ACM.

[158] Z. Ji and D. Dasgupta. Revisiting negative selection algorithm.
Evolutionary Computation Journal, 15(2):223–251, 2007.

[159] G. Jian, L. Da-xin, and C. in ge. An induction learning approach
for building intrusion detection models using genetic algorithms. In
The 5th World Congress on Intelligent Control and Automation
(WCICA 2004), volume 5, pages 4339–4342, Hangzhou, China, 5-
19 June 2004. IEEE Press.

[160] J. Jiang, C. Zhang, and M. Kame. RBF-based real-time hierarchical
intrusion detection systems. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN ’03), volume 2,
pages 1512–1516, Portland, OR, USA, 20-24 July 2003. IEEE Press.

[161] C. Jirapummin, N. Wattanapongsakorn, and P. Kanthamanon. Hy-
brid neural networks for intrusion detection system. In The 2002
International Technical Conference on Circuits/Systems, Com-
puters and Communications (ITC-CSCC ’02), volume 7, pages
928–931, Phuket, Thailand, 2002.

[162] H. G. Kayacik. Hierarchical self organizing map based ids on kdd
benchmark. Master’s thesis, Dalhousie University, 2003.

[163] H. G. Kayacik, A. N. Zincir-Heywood, and M. Heywood. Evolv-
ing successful stack overflow attacks for vulnerability testing. In
Proceedings of the 21st Annual Computer Security Applications
Conference (ACSAC ’05), pages 8–15. IEEE Press, 5-9 Dec. 2005.

[164] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood. On the
capability of an SOM based intrusion detection system. In Proceed-
ings of the International Joint Conference on Neural Networks
(IJCNN ’03), volume 3, pages 1808–1813, Portland, OR, USA, 20-
24 July 2003. IEEE Press.

[165] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood. A hier-
archical SOM-based intrusion detection system. Engineering Ap-
plications of Artificial Intelligence, 20(4):439–451, 2007.

[166] J. Kennedy and R. Eberhart. Particle swarm optimization. In Pro-
ceedings of IEEE International Conference on Neural Networks,
volume 4, pages 1942–1948. IEEE Press, Nov/Dec 1995.

[167] J. Kim. Integrating Artificial Immune Algorithms for Intrusion
Detection. PhD thesis, Department of Computer Science, Univer-
sity College London, 2003.

[168] J. Kim and P. Bentley. Negative selection and niching by an artifi-
cial immune system for network intrusion detection. In W.Banzhaf,
J.Daida, A.E.Eiben, M.H.Garzon, V.Honavar, M.Jakiela, and
R.E.Smith, editors, Late Breaking Papers in the Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO
99), pages 149–158, Orlando, FL, USA, 13-17 July 1999. Morgan
Kaufmann.

[169] J. Kim and P. Bentley. Towards an artificial immune system for
network intrusion detection: An investigation of dynamic clonal
selection. In D. B. Fogel, M. A. El-Sharkawi, X. Yao, G. Green-
wood, H. Iba, P. Marrow, and M. Shackleton, editors, Proceedings
of the IEEE Congress on Evolutionary Computation (CEC ’02),
volume 2, pages 1015–1020, Honolulu, HI, USA, 12-17 May 2002.
IEEE Press.

[170] J. Kim, P. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, and
J. Twycross. Immune system approaches to intrusion detection-a
review. Natural Computing: an international journal, 6(4):413–
466, 2007.

[171] J. Kim, P. Bentley, C. Wallenta, M. Ahmed, and S. Hailes. Dan-
ger is ubiquitous: Detecting malicious activities in sensor networks
using the dendritic cell algorithm. In H. Bersini and J. Carneiro,
editors, Artificial Immune Systems, volume 4163 of Lecture Notes

in Computer Science, pages 390–403. Springer Berlin / Heidelberg,
2006.

[172] J. Kim and P. J. Bentley. Towards an artificial immune system
for network intrusion detection: An investigation of clonal selection
with a negative selection operator. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’01), volume 2,
pages 1244–1252, Seoul, South Korea, 27-30 May 2001. IEEE Press.

[173] J. Kim and P. J. Bentley. Immune memory in the dynamic clonal
selection algorithm. In J. Timmis and P. J. Bentley, editors, Pro-
ceedings of the 1st International Conference on Artificial Im-
mune Systems (ICARIS ’02), pages 57–65, Canterbury, UK, 9-11
September 2002. Unversity of Kent at Canterbury Printing Unit.

[174] J. Kim and P. J. Bentley. A model of gene library evolution in the
dynamic clonal selection algorithm. In J. Timmis and P. J. Bent-
ley, editors, Proceedings of the 1st International Conference on
Artificial Immune Systems (ICARIS ’02), pages 175–182, Canter-
bury, UK, 9-11 September 2002. Unversity of Kent at Canterbury
Printing Unit.

[175] J. Kim and P. J. Bentley. Immune memory and gene library evo-
lution in the dynamical clonal selection algorithm. Journal of Ge-
netic Programming and Evolvable Machines, 5(4):361–391, 2004.

[176] J. Kim, J. Greensmith, J. Twycross, and U. Aickelin. Malicious
code execution detection and response immune system inpired by
the danger theory. In Adaptive and Resilient Computing Security
Workshop (ARCS 2005), Santa Fe, NM, USA, 2005.

[177] J. Kim, W. Wilson, U. Aickelin, and J. McLeod. Cooperative au-
tomated worm response and detection immune algorithm (CAR-
DINAL) inspired by t-cell immunity and tolerance. In C. Jacob,
M. L. Pilat, P. J. Bentley, and J. Timmis, editors, Proceedings
of the 4th International Conference on Artificial Immune Sys-
tems (ICARIS ’05), Banff, Alberta, CA, 14-17 August, 2005, vol-
ume 3627 of Lecture Notes in Computer Science, pages 168–181.
Springer Berlin / Heidelberg, 2005.

[178] B. Kosko. Fuzzy cognitive maps. International Journal of Man-
Machine Studies, 24(1):65–75, 1986.

[179] J. R. Koza. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA,
USA, 1992. ISBN-10: 0262111705.

[180] C. Kuok, A. Fu, and M. Wong. Mining fuzzy association rules in
databases. The ACM SIGMOD Record, 27(1):41–46, 1998.

[181] K. Labib and R. Vemuri. NSOM: A real-time network-based intru-
sion detection system using self-organizing maps. Technical report,
Dept. of Applied Science, University of California, Davis, 2002.

[182] P. LaRoche and A. N. Zincir-Heywood. 802.11 network intrusion
detection using genetic programming. In F. Rothlauf, editor,Work-
shop Proceedings of the Genetic and Evolutionary Computation
Conference, pages 170 – 171, Washington, D.C, USA, 25-26 June
2005. ACM.

[183] P. LaRoche and A. N. Zincir-Heywood. Genetic programming based
WiFi data link layer attack detection. In Proceedings of the 4th
Annual Communication Networks and Services Research Confer-
ence (CNSR 2006), pages 8–15. IEEE Press, 24-25 May 2006.

[184] K.-C. Lee and L. Mikhailov. Intelligent intrusion detection system.
In Proceedings of the 2nd IEEE International Conference on In-
telligence Systems, volume 2, pages 497–502. IEEE Press, 22-24
June 2004.

[185] S. C. Lee and D. V. Heinbuch. Training a neural-network based
intrusion detector to recognize novel attacks. IEEE Transactions
on Systems, Man and Cybernetics, Part A,, 31(4):294–299, 2001.

[186] E. Leon, O. Nasraoui, and J. Gomez. Anomaly detection based on
unsupervised niche clustering with application to network intrusion
detection. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’04), volume 1, pages 502–508, Portland, OR,
USA, 19-23 June 2004. IEEE Press.

[187] K. S. Leung, Y. Leung, L. So, and K. F. Yam. Rule learning in
expert systems using genetic algorithms: 1, concepts. In Proceeding
of the 2nd International Conference on Fuzzy Logic and Neural
Networks, volume 1, pages 201–204, 1992.

[188] W. Li. A genetic algorithm approach to network intrusion detection.
Technical report, SANS Institute 2004, 2004.

[189] W. Li. Using genetic algorithm for network intrusion detection. In
Proceedings of United States Department of Energy Cyber Secu-
rity Group 2004 Training Conference, Kansas City, KS, USA, 24-
27 May 2004.

[190] Y. Liao, V. R. Vemuri, and A. Pasos. Adaptive anomaly detection
with evolving connectionist systems. Journal of Network and Com-
puter Applications, 30(1):60–80, 2007. Special Issue on Network
and Information Security: A Computational Intelligence Approach.

[191] P. Lichodzijewski and M. I. Heywood. Pareto-coevolutionary ge-
netic programming for problem decomposition in multi-class clas-
sification. In H. Lipson, editor, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’07), pages 464–
471, London, England, UK, 7-11July 2007. ACM.

[192] P. Lichodzijewski, A. Zincir-Heywood, and M. I. Heywood. Dy-
namic intrusion detection using self-organizing maps. In In The

39

14th Annual Canadian Information Technology Security Sympo-
sium, Ottawa, Canada, May 2002.

[193] P. Lichodzijewski, A. Zincir-Heywood, and M. I. Heywood. Host-
based intrusion detection using self-organizing maps. In The
IEEE World Congress on Computational Intelligence, Interna-
tional Joint Conference on Neural Networks (IJCNN ’02), vol-
ume 2, pages 1714–1719, Honolulu, HI, USA, 12-17 May 2002. IEEE
Press.

[194] F. Liu and L. Lin. Unsupervised anomaly detection based on an
evolutionary artificial immune network. In F. R. et al., editor,
Applications on Evolutionary Computing-EvoWorkkshops 2005:
EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and
EvoSTOC, Lausanne, Switzerland, March 30 - April 1, 2005, vol-
ume 3449 of Lecture Notes in Computer Science, pages 166–174.
Springer Berlin / Heidelberg, 2005.

[195] F. Liu and L. Luo. Immune clonal selection wavelet network
based intrusion detection. In W. Duch, J. Kacprzyk, E. Oja,
and S. Zadrożny, editors, Artificial Neural Networks: Biological
Inspirations-ICANN 2005, volume 3696 of Lecture Notes in Com-
puter Science, pages 331–336. Springer Berlin / Heidelberg, 2005.

[196] F. Liu, B. Qu, and R. Chen. Intrusion detection based on immune
clonal selection algorithms. In G. I.Webb and XinghuoYu, editors,
AI 2004: Advances in Artificial Intelligence, volume 3339 of Lec-
ture Notes in Computer Science, pages 1226–1232. Springer Berlin
/ Heidelberg, 2004.

[197] Z. Liu, G. Florez, and S. M. Bridges. A comparison of input repre-
sentations in neural networks: A case study in intrusion detection.
In Proceedings of the International Joint Conference on Neural
Networks (IJCNN ’02), volume 2, pages 1708–1713, Honolulu, HI,
USA, 12-17 May 2002. IEEE Press.

[198] W. Lu. An unsupervised anomaly detection framework for
multiple-connection based network intrusions. PhD thesis, Depart-
ment of Electrical and Computer Engineering, University of Victo-
ria, 2005.

[199] W. Lu and I. Traore. Detecting new forms of network intrusion us-
ing genetic programming. Computational Intelligence, 20(3):475–
494, 2004. Blackwell Publishing, Boston MA & Oxford UK.

[200] W. Lu and I. Traore. An unsupervised anomaly detection frame-
work for network intrusions. Technical report, Information Secu-
rity and Object Technology (ISOT) Group, University of Victoria,
October 2005.

[201] E. Lumer and B. Faieta. Diversity and adaptation in populations
of clustering ants. In Proceedings of the 3rd International Con-
ference on Simulation of Adaptive Behaviour: From Animals to
Animats, volume 3, pages 599–508. MIT Press, Cambridge, MA,
USA, 1994.

[202] J. Luo and S. M. Bridges. Mining fuzzy association rules and fuzzy
frequency episodes for intrusion detection. International Journal
of Intelligent Systems, 15(8):687–703, 2001.

[203] J. Luo, S. M. Bridges, and R. B. Vaughn. Fuzzy frequent episodes
for real-time intrusion detection. In The 10th IEEE International
Conference on Fuzzy Systems (FUZZ ’01), volume 1, pages 368–
371, Melbourne, Vic., Australia, 2001. IEEE Press.

[204] W. Luo, X. Wang, and X. Wang. A novel fast negative selection
algorithm enhanced by state graphs. In L. N. de Castro and F. J.
Z. H. Knidel, editors, Artificial Immune Systems, volume 4628
of Lecture Notes in Computer Science, pages 168–181. Springer
Berlin / Heidelberg, 2007.

[205] K. Luther, R. Bye, T. Alpcan, A. Muller, and S. Albayrak. A co-
operative ais framework for intrusion detection. In IEEE Inter-
national Conference on Communications (ICC ’07), pages 1409–
1416, Glasgow, Scotland, 4-28 June 2007.

[206] S. W. Mahfoud. Crossover interactions among niches. In Proceed-
ings of the 1st IEEE Conference on Evolutionary Computation,
volume 1, pages 188–193, Orlando, FL, USA, June 1994.

[207] M. V. Mahoney and P. K. Chan. An analysis of the 1999
DARPA/Lincoln laboratory evaluation data for network anomaly
detection. Technical Report TR CS-2003-02, Computer Science De-
partment, Florida Institute of Technology, 2003.

[208] H. Mannila and H. Toivonen. Discovering generalized episodes
using minimal occurrences. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining,
pages 146–151, Portland, OR, USA, August 1996. AAAI Press.

[209] P. Matzinger. Tolerance, danger and the extended family. Annual
Review in Immunology, 12:991–1045, 1994.

[210] P. Matzinger. The danger model in its historical context. Scandi-
navian Journal of Immunology, 54(1-2):4–9, 2001.

[211] J. McHugh. Testing intrusion detection systems a critique of the
1998 and 1999 darpa intrusion detection system evaluations as per-
formed by lincoln laboratory. ACM Transactions on Information
and System Security, 3(4):262–294, 2000.

[212] L. Mé. GASSATA, a genetic algorithm as an alternative tool for
security audit trails analysis. In Proceedings of the 1st Interna-
tional Workshop on the Recent Advances in Intrusion Detection
(RAID 98), Louvain-la-Neuve, Belgium, 14-16 September 1998.

[213] M. Mischiatti and F. Neri. Applying local search and genetic evo-
lution in concept learning systems to detect intrusion in computer
networks. In R. L. de Mántaras and E. Plaza, editors, Proceedings
of the 11th European Conference on Machine Learning (ECML
’00), Barcelona, Spain, 31 May - 2 June, 2000, volume 1810 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2000.

[214] A. Mitrokotsa and C. Douligeris. Detecting denial of service attacks
using emergent self-organizing maps. In Proceedings of the 5th
IEEE International Symposium on Signal Processing and Infor-
mation Technology, pages 375–380. IEEE Press, 18-21 Dec. 2005.

[215] A. Mitrokotsa and C. Douligeris. Intrusion detection using emer-
gent self-organizing maps advances in artificial intelligence. In
G. Antoniou, G. Potamias, C. Spyropoulos, and D. Plexousakis, ed-
itors, Advances in Artificial Intelligence, volume 3955 of Lecture
Notes in Computer Science, pages 559–562. Springer Berlin / Hei-
delberg, SETN, 2006.

[216] A. Mitrokotsa, N. Komninos, and C. Douligeris. Towards an effec-
tive intrusion response engine combined with intrusion detection
in ad hoc networks. In The Sixth Annual Mediterranean Ad Hoc
Networking WorkShop, Corfu, Greece, June 12-15 2007.

[217] M. Mohajerani, A. Moeini, and M. Kianie. NFIDS: a neuro-fuzzy
intrusion detection system. In Proceedings of the 2003 10th IEEE
International Conference on Electronics, Circuits and Systems
(ICECS ’03), volume 1, pages 348–351, 14-17 Dec. 2003.

[218] M. Moradi and M. Zulkernine. A neural network based system for
intrusion detection and classification of attacks. In Proceedings of
the 2004 IEEE International Conference on Advances in Intel-
ligent Systems-Theory and Applications, Luxembourg-Kirchberg,
Luxembourg, 15-18 November 2004. IEEE Press.

[219] S. Mukkamala and A. H. Sung. A comparative study of techniques
for intrusion detection. In Proceedings of 15th IEEE International
Conference on Tools with Artificial Intelligence, pages 570– 577.
IEEE Press, 3-5 Nov. 2003.

[220] S. Mukkamala, A. H. Sung, and A. Abraham. Modeling intrusion
detection systems using linear genetic programming approach. In
R. Orchard, C. Yang, and M. Ali, editors, The 17th International
Conference on Industrial & Engineering Applications of Artifi-
cial Intelligence and Expert Systems, Innovations in Applied Ar-
tificial Intelligence,, volume 3029 of Lecture Notes in Computer
Science, pages 633–642. Springer Verlag, Germany, 2004.

[221] S. Mukkamala, A. H. Sung, and A. Abraham. Intrusion detection
using an ensemble of intelligent paradigms. Journal of Network
and Computer Applications, 28(2):167–182, 2005.

[222] F. Neri. Mining TCP/IP traffic for network intrusion detection by
using a distributed genetic algorithm. In R. L. de Mántaras and
E. Plaza, editors, Proceedings of the 11th European Conference
on Machine Learning (ECML ’00), Barcelona, Spain, 31 May -
2 June, 2000, volume 1810 of Lecture Notes in Computer Science,
pages 313–322. Springer Berlin / Heidelberg, 2000.

[223] S. Olariu and A. Y. Zomaya, editors. Handbook Of Bioinspired
Algorithms And Applications. Chapman & Hall/CRC, 2006. ISBN-
10:1584884754.

[224] M. Oltean. Multi expression programming. Technical report, De-
partment of Computer Science, Babes-Bolyai University, June 4
2006.

[225] M. O’Neill and C. Ryan. Grammatical evolution. IEEE Transac-
tions on Evolutionary Computation, 5(4):349–358, 2001.

[226] M. Ostaszewski, F. Seredynski, and P. Bouvry. Immune anomaly
detection enhanced with evolutionary paradigms. In M. Cattolico,
editor, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’06), pages 119–126, Seattle, WA, USA, 8-12
July 2006. ACM.

[227] M. Ostaszewski, F. Seredynski, and P. Bouvry. A nonself space ap-
proach to network anomaly detection. In 20th International Par-
allel and Distributed Processing Symposium (IPDPS ’06), pages
8–16. IEEE Press, 25-29 April 2006.

[228] M. Ostaszewski, F. Seredynski, and P. Bouvry. Coevolutionary-
based mechanisms for network anomaly detection. Journal of
Mathematical Modelling and Algorithms, 6(3):411–431, 2007.

[229] T. Özyer, R. Alhajj, and K. Barker. Intrusion detection by inte-
grating boosting genetic fuzzy classifier and data mining criteria
for rule pre-screening. Journal of Network and Computer Appli-
cations, 30(1):99–113, 2007.

[230] R. Parpinelli, H. Lopes, and A. Freitas. Data mining with an ant
colony optimization algorithm. Evolutionary Computation, IEEE
Transactions on, 6(4):321–332, 2002.

[231] S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas. Mod-
eling intrusion detection system using hybrid intelligent systems.
Journal of Network and Computer Applications, 30(1):114–132,
2007.

[232] A. Perelson, R. Hightower, and S. Forrest. Evolution and somatic
learning in V-region genes. Research in Immunology, 147(4):202–
208, 1996.

40

[233] M. M. Pillai, J. H. Eloff, and H. S. Venter. An approach to imple-
ment a network intrusion detection system using genetic algorithms.
In Proceedings of the 2004 annual research conference of the
South African institute of computer scientists and information
technologists on IT research in developing countries, volume 75 of
ACM International Conference Proceeding Series, pages 221–221,
Stellenbosch, Western Cape, South Africa, 2004. South African In-
stitute for Computer Scientists and Information Technologist.

[234] D. Poole, A. Mackworth, and R. Goebel. Computational Intelli-
gence - A Logical Approach. Oxford University Press, Oxford, UK,
1998. ISBN-10: 195102703.

[235] V. Ramos and A. Abraham. ANTIDS: Self-organized ant-based
clustering model for intrusion detection system. In The 4th IEEE
International Workshop on Soft Computing as Transdisciplinary
Science and Technology (WSTST’05), Japan, 2005. IEEE Press.

[236] A. Rapaka, A. Novokhodko, and D. Wunsch. Intrusion detection
using radial basis function network on sequence of system calls.
In Proceedings of the International Joint Conference on Neural
Networks (IJCNN ’03), volume 3, pages 1820–1825, Portland, OR,
USA, 20-24 July 2003. IEEE Press.

[237] B. C. Rhodes, J. A. Mahaffey, and J. D. Cannady. Multiple self-
organizing maps for intrusion detection. In Proceedings of the 23rd
National Information Systems Security Conference, pages 16–19,
Baltimore, MA, USA, 16-19 October 2000.

[238] J. Ryan, M. J. Lin, and R. Miikkulainen. Intrusion detection with
neural networks. Advances in Neural Information Processing Sys-
tems, 10:943–949, 1998.

[239] M. Sabhnani and G. Serpen. Why machine learning algorithms fail
in misuse detection on KDD intrusion detection data set. Intelli-
gent Data Analysis, 8(4):403–415, 2004.

[240] S. T. Sarasamma, Q. A. Zhu, and J. Huff. Hierarchical kohonenen
net for anomaly detection in network security. IEEE Transactions
on Systems, Man and Cybernetics, Part B, 35(2):302–312, 2005.

[241] H. Seo, T. Kim, and H. Kim. Modeling of distributed intrusion
detection using fuzzy system. In D.-S. Huang, K. Li, and G. W. Ir-
win, editors, Computational Intelligence, volume 4114 of Lecture
Notes in Computer Science, pages 165–170. Springer Berlin / Hei-
delberg, 2006.

[242] K. Shafi, H. Abbass, and W. Zhu. Real time signature extraction
during adaptive rule discovery using ucs. In D. Srinivasan and
L. Wang, editors, Proceedings of the IEEE Congress on Evolution-
ary Computation (CEC ’07), pages 2509–2516, Singapore, 25-28
September 2007. IEEE Press.

[243] K. Shafi, H.A.Abbass, and W. Zhu. An adaptive rule-based intru-
sion detection architecture. In The Security Technology Confer-
ence, the 5th Homeland Security Summit, pages 345–355, Can-
berra, Australia, 19-21 September 2006.

[244] K. Shafi, Kamran, H. A. Abbass, and W. Zhu. The role of early
stopping and population size in xcs for intrusion detection. In T.-
D. Wang, X. Li, S.-H. Chen, X. Wang, H. Abbass, H. Iba, G. Chen,
and XinYao, editors, Simulated Evolution and Learning, volume
4247 of Lecture Notes in Computer Science, pages 50–57. Springer
Berlin / Heidelberg, 2006.

[245] K. Shafi, T. Kovacs, H. A. Abbass, and W. Zhu. Intrusion detection
with evolutionary learning classifier systems. Natural Computing,
2007. In print. Springer Netherlands. Retrieved January 26, 2008,
from http://www.springerlink.com/content/u71xl64277408137/.

[246] H. Shah, J. Undercoffer, and A. Joshi. Fuzzy clustering for intrusion
detection. In The 12th IEEE International Conference on Fuzzy
Systems (FUZZ ’03), volume 2, pages 1274–1278, St.Louis, MO,
USA, 25-28 May 2003. IEEE Press.

[247] J. M. Shapiro, G. B. Lamont, and G. L. Peterson. An evolution-
ary algorithm to generate hyper-ellipsoid detectors for negative
selection. In H.-G. Beyer and U.-M. O’Reilly, editors, Proceed-
ings of the Genetic and Evolutionary Computation Conference
(GECCO ’05), pages 337–344, Washington, D.C., USA, 25-29 June
2005. ACM.

[248] C. Sinclair, L. Pierce, and S. Matzner. An application of machine
learning to network intrusion detection. In Proceedings of 15th An-
nual Computer Security Applications Conference (ACSAC ’99),
pages 371–377, Phoenix, AZ, USA, 6-10 December 1999. IEEE
Computer Society.

[249] A. Siraj, S. M. Bridges, and R. B. Vaughn. Fuzzy cognitive maps
for decision support in an intelligent intrusion detection system.
In Proceedings of the 20th International Conference of the North
American Fuzzy Information Society (NAFIPS ’01) and Joint the
9th IFSA World Congress, volume 4, pages 2165–2170, Vancouver,
Canada, 25-28 July 2001. IEEE Press.

[250] A. Siraj, R. B. Vaughn, and S. M. Bridges. Intrusion sensor data
fusion in an intelligent intrusion detection system architecture. In
Proceedings of the 37th Annual Hawaii International Conference
on System Sciences (HICSS ’04), volume 9, pages 10–20. IEEE
Press, 5-8 Jan. 2004.

[251] A. Somayaji, S. A. Hofmeyr, and S. Forrest. Principles of a com-
puter immune system. In Proceedings of the 1997 workshop on

New security paradigms, pages 75 – 82, Langdale, Cumbria, UK,
1997. ACM.

[252] D. Song. A linear genetic programming approach to intrusion de-
tection. Master’s thesis, Dalhousie University, March 2003.

[253] D. Song, M. I. Heywood, and A. N. Zincir-Heywood. A linear ge-
netic programming approach to intrusion detection. In E. C.-P.
et al., editor, Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO ’03), Part II, Chicago, IL, USA,
12-16 July, 2003, volume 2724 of Lecture Notes in Computer Sci-
ence, pages 2325–2336. Springer Berlin / Heidelberg, 2003.

[254] D. Song, M. I. Heywood, and A. N. Zincir-Heywood. Training ge-
netic programming on half a million patterns: An example from
anomaly detection. IEEE Transactions on Evolutionary Compu-
tation, 9(3):225–239, 2005.

[255] T. Stibor, P. Mohr, and J. Timmis. Is negative selection appro-
priate for anomaly detection? In H.-G. Beyer and U.-M. O’Reilly,
editors, Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO ’05), pages 321–328, Washington, D.C.,
USA, 25-29 June 2005. ACM.

[256] T. Stibor, J. Timmis, and C. Eckert. A comparative study of
real-valued negative selection to statistical anomaly detection tech-
niques. In C. Jacob, M. L. Pilat, P. J. Bentley, and J. Timmis,
editors, Artificial Immune Systems, volume 3627 of Lecture Notes
in Computer Science, pages 262–275. Springer Berlin / Heidelberg,
2005.

[257] K. Tan. The application of neural networks to unix computer
security. In Proceedings of IEEE International Conference on
Neural Networks, volume 1, pages 476–481, Perth, WA, Australia,
Nov/Dec 1995. IEEE Press.

[258] G. Tedesco, J. Twycross, and U. Aickelin. Integrating innate and
adaptive immunity for intrusion detection. In H. Bersini and
J. Carneiro, editors, Proceedings of the 5th International Confer-
ence on Artificial Immune Systems (ICARIS ’06), Oeiras, Portu-
gal, 4-6 September, 2006, volume 4163 of Lecture Notes in Com-
puter Science, pages 193–202. Springer Berlin / Heidelberg, 2006.

[259] J. Tian, Y. Fu, Y. Xu, and J. ling Wang. Intrusion detection com-
bining multiple decision trees by fuzzy logic. In Proceedings of the
Sixth International Conference on Parallel and Distributed Com-
puting, Applications and Technologies (PDCAT ’05), pages 256–
258. IEEE Press, 05-08 Dec. 2005.

[260] J. Timmis. Artificial immune systems-today and tomorrow. Natu-
ral Computing, 6(1):1–18, 2007.

[261] A. N. Toosi and M. Kahani. A new approach to intrusion detection
based on an evolutionary soft computing model using neuro-fuzzy
classifiers. Computer Communications, 30(10):2201–2212, 2007.

[262] C.-H. Tsang and S. Kwong. Multi-agent intrusion detection system
in industrial network using ant colony clustering approach and un-
supervised feature extraction. In IEEE International Conference
on Industrial Technology (ICIT ’05), pages 51– 56. IEEE Press,
14-17 Dec. 2005.

[263] C.-H. Tsang and S. Kwong. Ant colony clustering and fea-
ture extraction for anomaly intrusion detection. In A. Abraham,
C. Grosan, and V. Ramos, editors, Swarm Intelligence in Data
Mining, volume 34 of Studies in Computational Intelligence, pages
101–123. Springer Berlin / Heidelberg, 2006.

[264] C.-H. Tsang, S. Kwong, and H. Wang. Anomaly intrusion detection
using multi-objective genetic fuzzy system and agent-based evolu-
tionary computation framework. In Proceedings of the Fifth IEEE
International Conference on Data Mining (ICDM ’05), pages 4–
7. IEEE Press, 27-30 Nov. 2005.

[265] C.-H. Tsang, S. Kwong, and H. Wang. Genetic-fuzzy rule mining
approach and evaluation of feature selection techniques for anomaly
intrusion detection. Pattern Recognition, 40(9):2373–2391, 2007.

[266] J. Twycross and U. Aickelin. libtissue-implementing innate immu-
nity. In G. G. Y. et al., editor, Proceedings of the IEEE Congress
on Evolutionary Computation (CEC ’06), pages 499–506, Vancou-
ver, Canada, 16-21 July 2006. IEEE Press.

[267] J. Twycross and U. Aickelin. Detecting anomalous process be-
haviour using second generation artificial immune systems. Re-
trieved January 26, 2008, from http://www.cpib.ac.uk/~jpt/papers/
raid-2007.pdf, 2007.

[268] J. Twycross and U. Aickelin. An immune-inspired approach to
anomaly detection. In Handbook of Research on Information As-
surance and Security. Idea Publishing Group, 2007.

[269] J. P. Twycross. Integrated Innate and Adaptive Artificial Immune
Systems applied to Process Anomaly Detection. PhD thesis, the
University of Nottingham, January 2007.

[270] W. Wang, X. Guan, X. Zhang, and L. Yang. Profiling program
behavior for anomaly intrusion detection based on the transition
and frequency property of computer audit data. Computers &
Security, 25(7):539–550, 2006.

[271] A. Watkins, J. Timmis, and L. Boggess. Artificial immune recog-
nition system (airs): An immune-inspired supervised learning algo-
rithm. Genetic Programming and Evolvable Machines, 5(3):291–
317, 2004.

41

http://www.springerlink.com/content/u71xl64277408137/
http://www.cpib.ac.uk/~jpt/papers/raid-2007.pdf
http://www.cpib.ac.uk/~jpt/papers/raid-2007.pdf

[272] S. Wierzchon. Generating optimal repertoire of antibody strings
in an artificial immune system. In Proceedings of the IIS’2000
Symposium on Intelligent Information Systems, pages 119–133.
Physica-Verlag, 2000.

[273] P. D. Williams, K. P. Anchor, J. L. Bebo, G. H. Gunsch, and G. D.
Lamont. CDIS: Towards a computer immune system for detecting
network intrusions. In W. Lee, L. Mé, and A. Wespi, editors, Pro-
ceedings of the 4th International Workshop on Recent Advances
in Intrusion Detection (RAID ’01), Davis, CA, USA, 10-12 Oc-
tober, volume 2212 of Lecture Notes in Computer Science, pages
117–133. Springer Berlin / Heidelberg, 2001.

[274] D. Wilson and D. Kaur. Using grammatical evolution for evolving
intrusion detection rules. In Proceedings of the 5th WSEAS Int.
Conf. on Circuits, Systems, Electronics, Control & Signal Pro-
cessing, pages 42–47, Dallas, TX, USA, 1-3 November 2006.

[275] T. Xia, G. Qu, S. Hariri, and M. Yousif. An efficient network intru-
sion detection method based on information theory and genetic al-
gorithm. In The 24th IEEE International Conference on Perfor-
mance, Computing, and Communications (IPCCC 2005), pages
11–17, Phoenix, AZ, USA, 7-9 April 2005. IEEE Press.

[276] J. Xian, F. Lang, and X. Tang. A novel intrusion detection method
based on clonal selection clustering algorithm. In Proceedings of
2005 International Conference on Machine Learning and Cyber-
netics, volume 6, pages 3905– 3910, 18-21 Aug. 2005.

[277] J. Xin, J. E. Dickerson, and J. A. Dickerson. Fuzzy feature extrac-
tion and visualization for intrusion detection. In The 12th IEEE In-
ternational Conference on Fuzzy Systems (FUZZ ’03), volume 2,
pages 1249–1254, St.Louis, MO, USA, 25-28 May 2003. IEEE Press.

[278] Q. Xu, W. Pei, L. Yang, and Q. Zhao. An intrusion detection
approach based on understandable neural network trees. Inter-
national Journal of Computer Science and Network Security,
6(11):229–234, 2006.

[279] J. Yao, S. Zhao, and L. V. Saxton. A study on fuzzy intrusion de-
tection. In Proceedings of SPIE: Data Mining, Intrusion Detec-
tion, Information Assurance, And Data Networks Security, vol-
ume 5812, pages 23–30, 2005.

[280] C. Yin, S. Tian, H. Huang, and J. He. Applying genetic program-
ming to evolve learned rules for network anomaly detection. In
L. Wang, K. Chen, and Y. S. Ong, editors, Advances in Natural
Computation, volume 3612 of Lecture Notes in Computer Science,
pages 323–331. Springer Berlin / Heidelberg, 2005.

[281] Y. Yu, F. Gao, and Y. Ge. Hybrid BP/CNN neural network for
intrusion detection. In Proceedings of the 3rd international con-
ference on Information security, volume 85 of ACM International
Conference Proceeding Series, pages 226–228, 2004.

[282] L. Zadeh. Role of soft computing and fuzzy logic in the concep-
tion, design and development of information/intelligent systems. In
O. Kaynak, L. Zadeh, B. Turksen, and I. Rudas, editors, Computa-
tional Intelligence: Soft Computing and Fuzzy-Neuro Integration
with Applications; Proceedings of the NATO Advanced Study In-
stitute on Soft Computing and Its Applications held at Manavgat,
Antalya, Turkey, August 21-31, 1996, volume 162 of NATO ASI
Series, pages 1–9. Springer Berlin / Heidelberg, 1998.

[283] S. Zanero. Analyzing TCP traffic patterns using self organizing
maps. In F. Roli and S. Vitulano, editors, International Confer-
ence on Image Analysis and Processing (ICIAP ’05), Cagliari,
Italy, 6-8 September, 2005, volume 3617 of Lecture Notes in Com-
puter Science, pages 83–90. Springer Berlin / Heidelberg, 2005.

[284] S. Zanero. Improving self organizing map performance for net-
work intrusion detection. In International Workshop on Clustering
High-Dimensional data and its applications, in Conjunction with
the 5th SIAM International Conference on Data Mining (SDM
’05), Newport Beach, CA, USA, April 2005.

[285] S. Zanero and S. M. Savaresi. Unsupervised learning techniques
for an intrusion detection system. In Proceedings of the ACM
Symposium on Applied Computing (ACM SAC ’04), Computer
security, pages 412–419, Nicosia, Cyprus, 14-17 Mar 2004. ACM.

[286] J. Zeng, T. Li, X. Liu, C. Liu, L. Peng, and F. Sun. A feedback
negative selection algorithm to anomaly detection. In Third Inter-
national Conference on Natural Computation (ICNC 2007), vol-
ume 3, pages 604–608. IEEE Press, 24-27 Aug 2007.

[287] B. Zhang. Internet intrusion detection by autoassociative neural
network. In Proceedings of International Symposium on Informa-
tion & Communications Technologies, Malaysia, Dec. 2005.

[288] C. Zhang, J. Jiang, and M. Kamel. Comparison of BPL and RBF
network in intrusion detection system. In G. Wang, Q. Liu, Y. Yao,
and A. Skowron, editors, Proceedings of the 9th International Con-
ference on Rough Sets, Fuzzy Sets, Data Mining, and Granular
Computing (RSFDGrC ’03), 26-29 May, Chongqing, China, vol-
ume 2639 of Lecture Notes in Computer Science, chapter Proceed-
ings of the 9th International Conference on Rough Sets, Fuzzy Sets,
Data Mining, and Granular Computing (RSFDGrC ’03), pages 466–
470. Springer Berlin / Heidelberg, 2003.

[289] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. Ucles. HIDE:
a hierarchical network intrusion detection system using statistical

preprocessing and neural network classification. In Proceedings of
the 2001 IEEE Workshop Information Assurance and Security,
pages 85–90, West Point, NY, USA, 2001. IEEE Press.

[290] J. Zhao, J. Zhao, and J. Li. Intrusion detection based on clustering
genetic algorithm. In Proceedings of the Fourth International Con-
ference on Machine Learning and Cybernetics, volume 6, pages
3911–3914, Guangzhou, China, 18-21 August 2005. IEEE Press.

[291] C. Zheng and L. Chen. FCBI-an efficient user-friendly classifier
using fuzzy implication table. In L. Kalinichenko, R. Manthey,
B. Thalheim, and U. Wloka, editors, Advances in Databases and
Information Systems, volume 2798 of Lecture Notes in Computer
Science, pages 266–277. Springer Berlin / Heidelberg, 2003.

42

	Technical report 2008-05coverWBSW.pdf
	Page 1

	TechnicalReport2008-05SW&WB.pdf
	Introduction
	Background
	Intrusion Detection
	Computational Intelligence

	Datasets and Performance Evaluation
	Datasets
	Performance Evaluation

	Algorithms
	Artificial Neural Networks
	Fuzzy Sets
	Evolutionary Computation
	Artificial Immune Systems
	Swarm Intelligence
	Soft Computing

	Discussion
	Conclusion
	Acknowledgment

