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A �ltering algorithm for approximatepattern mathing with redued veri�ationChristoph J. RihterUniversity of DortmundDept. of Computer Siene44221 Dortmund, Germanyhristoph.rihter�s.uni-dortmund.de Wolfgang BanzhafMemorial University of NewfoundlandDept. of Computer SieneSt. John's, NL, Canada A1C 5S7banzhaf�s.mun.aThis paper desribes an algorithm for approximate pattern mathing basedon the partitioning into exat searh �ltering approah. The Sequitur algo-rithm is mainly utilized to redue the amount of heking needed, as hekingis the expensive part in �ltering algorithms. Thus, a better �ltration e�-ieny ould be ahieved for higher error levels and also a good performanefor shorter texts.Keywords: approximate pattern mathing, sequene omparison, �ltering,partitioning into exat searh, Sequitur1 IntrodutionApproximate string mathing (or also alled approximate pattern mathing or k di�er-enes problem) desribes the problem of �nding a ertain pattern in a text assumingthat either the text or the pattern ontains errors. As a result, all positions are aeptedwhere a pattern is found in the text, whih di�ers not more than a ertain limited num-ber of errors from the given pattern. Sine this is a very general problem, there is agreat variety of appliations in di�erent areas like omputational biology, text retrieval,and others like listed in [23, 31, 43℄. To solve the problem a lot of algorithms have beendesigned. Overviews are given in various papers and books whereas [17, 30, 31, 36℄ arethe most reent ones.One lass of solutions is the lass of �ltering algorithms. The algorithms of thislass are working in two phases, one for �ltration and one for the heking (also alledveri�ation). Sine the heking phase is more expensive, it is useful to redue theproportion of this phase that the algorithm spends less time there.Closely related to approximate string mathing is the problem of ompressed approxi-mate string mathing. It deals with ompressed, i. e. redundany redued, texts instead ofunompressed texts. The pattern searh is performed without unompressing the text.



This problem was investigated only in the very reent years and there are only a fewsolutions to this problem up to now [22, 27, 28, 37℄.The algorithm presented in this paper solves the problem of approximate stringmathing on the basis of a �ltering approah, but uses the general idea of redundanyredution to spend less time in the heking phase. Before performing the pattern searhon the text, a preproessing step is used to alulate the redundany information (thisan be ompared to the ompression step in ompressed approximate string mathing).During the searh, the redundany information an be used to skip searh and veri�ationin some areas of the text or to repeat mathings.This paper is organized as follows. In the next setion we brie�y disuss prevoiuswork. After the algorithm itself is presented in Setion 3, in Setion 4 the pratialbehavior of the algorithm is estimated. Finally the last setion draws onlusions andgives suggestions for future work.2 Related WorkIn this setion, a formal de�nition of the problem is given. Furthermore, the generalontext is outlined and the algorithm presented here is positioned in this ontext.The problem of approximate pattern mathing is de�ned as follows: Given a textT = t1 : : : tn, and a pattern P = p1 : : :pm (ti; pj 2 �), �nd all positions in T , where Pappears with at most k errors, i. e. return the set fjx �P j; T = x �Py ^ d(P; �P) � kg. x andy are substrings of T , j:j gives the length of a string and d(P; �P) gives the edit distane(also alled Levenshtein distane [26℄) between P and �P . The edit distane between twostrings haraterizes the number of transformation operations (insertion, deletion andreplaement), that are neessary to transform one string into the other one.The general solution priniple utilizes dynami programming and was �rst used onlyto alulate the edit distane (e. g. in [40, 43, 44℄); though with minor hanges a searhvariant is also possible [45, 47℄. Using the unit ost error model (ounting of errors =ost 1 per error), the general dynami programming algorithm takes O(nm). Based onthis priniple, a lot of other algorithms have been developed [31℄ whih ahieve O(kn)in the worst ase and O(kn=p�) in the average ase (like the algorithm of Chang andLampe [9℄), where � is the size of the alphabet �.To ahieve a better average ase behavior the onept of �ltering was applied to ap-proximate pattern mathing (�rst by Tarhio and Ukkonen [53℄ followed by many others).The idea behind this onept is, that it is sometimes easier to deide for a text positionthat no approximate mathing ours than to ensure whether there is an approximatemathing. Di�erent �ltering algorithms an be lassi�ed by the �ltering approah andadditionally by the online appliability. Unlike online algorithms, o�line algorithms pre-proess the text in advane by building an index to use it for a better performane duringthe searh. Usual indexing data strutures are su�x trees [12, 19, 46, 56℄, su�x arrays



[34℄, q-grams [8, 19, 29, 32℄ and q-samples [39, 51℄. If the text is too large or a searhis performed in the text very frequently, the preproessing osts may pay o� and o�inealgorithms an be used as alternative approahes to online algorithms.There are di�erent �ltering approahes. Most approahes an be seen as appliationsof the following Lemma (see [36℄):Lemma Let A and B be two strings, suh that d(A;B) � k. Let A = A1x1A2 : : : xj�1Ajfor strings Ai and xi and for any j � 1.1. For j < k+1: Let ki be any set of nonnegative numbers suh thatPji=1 ki � k�j+1.Then, at least one string Ai appears with at most ki errors in B.2. For j � k + 1, thena) at least j � k strings Ai1 : : : ; Aij�k appear in B.b) the relative distanes from these j�k strings inside B annot di�er from thosein A by more than k.Though not all �ltering approahes an be ategorized by this Lemma (e. g. [29,38, 55℄), it is very useful to lassify �ltering approahes. The �rst ase of the lemma(j < k + 1) haraterizes a partitioning of the problem into smaller problem instanes,while the seond ase (j � k + 1) haraterizes what is alled partitioning into exatsearh. Furthermore it is a di�erene for an algorithm, whether A in the lemma is anourrane �P of P in T (i. e. the errors are assumed to be in the text) or A orrespondsto P diretly (i. e. the errors are assumed to be in the pattern). Figure 1 shows thelassi�ation of di�erent �ltering algorithms following the lemma.smaller instanes exat searherror in pattern [5℄, [34℄� [6℄,[10℄,[18℄,[32℄�,[46℄�,[53℄,[58℄error in text [11℄, [39℄� [19℄�,[50℄�,[51℄�,[52℄�Figure 1: Classi�ation of di�erent �ltering algorithms. � denotes an indexed algorithmin the referened paper.In this paper partitioning into exat searh is used assuming that errors our in thepattern. A brief overview on the algorithms of this lass follows now. The algorithms ofJokinen et al. [18℄ and of Tarhio and Ukkonen [53℄ an be lassi�ed also as ounting �lters,as the number of haraters ful�lling ertain onditions in a text window is ounted. Inboth algorithms j is hosen as m and thus every Ai of the lemma orresponds to asingle harater of the pattern. While in [18℄ the only ondition is the number of exatmathing haraters between a text window and the pattern, in [53℄ the number of badharaters is ounted, i. e. the number of haraters that do neither math at the atualposition nor in a distane of at most k. Whenever the ounting ondition is not ful�lled



in the text window, it is shifted further along the text using Boyer�Moore [7℄ tehniques.Also Chang and Lawler [10℄ apply the lemma in the same way with j = m. Basially,they hek whether more than m � k text haraters are needed to over k strokes ofonseutive harater mathings with the pattern. To searh the strokes of mathingharaters a su�x tree of the pattern is used.The algorithm presented in Setion 3 applies the lemma in the same way as Wu andManber [58℄ or Baeza-Yates and Perleberg [6℄. The pattern is split into k+1 piees (theAi in the lemma) and all of these piees are searhed exatly in the text. If one of thesepiees is found, an area ontaining this exat mathing is heked for an approximatemathing with a non �ltering algorithm. To searh for the pattern piees, in [58℄ anextension of shift-or [4℄ is used, while in [6℄ the algorithm of Aho and Corasik [2℄ (whihis a multi pattern variant of the Knuth�Morris�Pratt [21℄ searh algorithm) is applied.Navarro and Baeza-Yates [32℄ implemented an indexed variant of the k+1 partitioningwith searhing the pattern piees in a q-gram index. Shi [46℄ extended the priniple ofk + 1 partitioning to k + s; s � 1 partitioning and performed the searh of the patternpiees with the help of a su�x tree index of the text.Besides these algorithms with errors assumed in the pattern, there are also somealgorithms (see Figure 1) onsidering the errors to be in the text while following thepartitioning into exat searh approah.The algorithms in [50℄, [52℄ and [19℄ an be seen as earlier versions of the algorithmof Sutinen and Tarhio [51℄, where a q-sample index (samples taken with a distane h,q � h < m) of the text is used. All pattern q-grams are searhed in the index and if atleast s (depending on h) onseutive q-samples are mathed a heking is triggered.As with O(m2) the osts for heking are expensive ompared to the linear time of thesearh algorithms, it is very important for the �ltering algorithms that the heking timeis not dominant, i. e. that the average heking osts are O(1). This is heavily dependenton the error level � = k=m, beause the less errors are allowed, the less possible hitsneeds to be heked. The kind of �lter onsidered in this paper (partitioning into exatsearh of k + 1 pattern piees) has been proven to be good for low error levels [31℄, butwhenever there are too many possible hits to hek, the time needed for heking is toohigh.There are di�erent ideas to redue the overall time needed for heking. In a generalimprovement method for �ltering algorithms, Giegerih et al. [16℄ mixed the hekingphase with the searh phase. With the information of the searh phase about the maximalnumber of errors left, the heking phase an be stopped prematurely if in the progress ofheking the atual number of errors shows that an approximate mathing is not possibleanymore. With hierarhial veri�ation another idea was presented by Navarro andBaeza-Yates [30, 33, 35℄. They applied the lemma mentioned above not only during thesearh phase of pattern piees with bk=j errors, but also in the heking phase. Insteadof heking the omplete area at one, two neighboring pattern piees are merged andheked for bk= j2 errors. This merging is suessively ontinued until either the whole



pattern is found with at most k errors, or in one of the merging steps the heking failed.Another idea to redue the overall heking time, is to adapt the heking algorithm forreusing the information already alulated, if the area to be heked partly overlaps withthe last heked area (pathwork veri�ation).A very di�erent idea for the same purpose is presented in this paper. To redue thetotal amount of heking needed, the redundany of the given text an be used.In a problem losely related to approximate string mathing the priniple of redun-dany redution is also utilized. In ompressed approximate string mathing the text isonsidered to exist in a ompressed (i. e. redundany redued) form. There are severaldi�erent ompression shemes and for various ditionary based methods like the Lempel-Ziv family [57, 59, 60℄, Sequitur [42℄, BPE (byte pair enoding) [13℄, Re-Pair (reursivepairing) [25℄ and run length enoding, Kida et al. [20℄ introdued a ollage system as aunifying framework. They also introdued a general algorithm for exat ompressed pat-tern mathing within this framework, but the problem of ompressed approximate stringmathing was not addressed. Kärkkäinen et al. [22℄ presented the �rst algorithm to solvethis problem. Their algorithm is for LZ78 [60℄ and LZW [57℄ ompressed texts and usesa dynami programming approah to ahieve O(mk�n+ r) time and O(�nkm+ �n log �n)spae, where r is the number of mathes and �n the ompressed length of the text. Basedon the same ompression shemes Matsumoto et al. [27℄ presented an algorithm using bit-parrallel tehniques and running in O(k2�n+km) time and O(k2�n) spae. !!!!Navarro etal. [37℄ presented an algorithm with a better pratial behavior using a �ltering approah.They perform a multi pattern searh on piees of the pattern followed by veri�ation ona loally deompressed text if neessary. A di�erent text ompression sheme, run lengthenoding, is assumed by Mäkinen et al. [28℄. Their algorithm an handle arbitrary ostsof the basi edit operations and runs in O(m�n �m) time, where �m is the ompressed lengthof the pattern. For other ompression methods the problem of ompressed approximatestring mathing has not been solved yet.The algorithm presented in this paper does not deal with the ompressed variant ofthe approximate string mathing problem, but uses the Sequitur ompression sheme[42℄ in the preproessing step. The basi idea of the Sequitur algorithm is to representthe input sequene in a way that no phrase appears twie or more often. To ahievethis, every phrase appearing more than one is replaed with a nonterminal symbolrepresenting a rule that exatly desribes this phrase. The algorithm proesses the inputsequene linearly and takes are that the following two properties hold:� no pair of adjaent symbols appears more than one in the grammar (guaranteesuniqueness of rules)� every rule is used more than one (guarantees that eah rule is useful)For example, proessing the text ababab results in the grammarS ! R1R2R1



R1 ! R2R2 ! abwhere S is the start symbol and R1 and R2 are nonterminals.A Sequitur grammar an be alulated in linear time [42℄ and used as ompressionmethod, it has been shown [41℄ to be extremely e�etive in the ompression of semi-strutured text.In the next setion a �ltering algorithm for approximate pattern mathing will bedesribed that uses the Sequitur grammar to gain redundany information, whih will beused to redue the amount of heking needed. Thus, as a omplete �ltering algorithm,the algorithm is not an alternative to the other approahes to redue overall hekingamount desribed earlier. It an be seen as an extension of the partitioning into exatsearh �ltering algorithm, that still ould be ombined with one of the methods to redueheking amount.3 The AlgorithmThe algorithm desribed in this setion solves the problem of approximate pattern math-ing as de�ned in Setion 2. First, the general priniple of the algorithm will be explained.Afterwards, a more formal desription of the algorithm will reveal details. At the end ofthis setion some variations of the algorithm are disussed.3.1 General PrinipleGenerally the algorithm onsists of two phases. The �rst phase is the preproessing phase,where information about the text redundany is gained. The seond phase performs theatual searh of the approximate ourrenes of the pattern.The preproessing phase fouses on the text primarily, but a very few alulationson the pattern are neessary also. Using the Sequitur algorithm (Setion 2) a grammaris inferred from the text T . With the grammar the text is represented by a startingrule referring to symbols and other rules, while the existene of every other rule meansthat the text omponent represented by this rule appears at least twie in T (Sequiturondition). Additionally, for every rule of the grammar the length of represented textomponent and a list of all positions where this rule ours in the text is stored.The pattern is divided into k + 1 pattern piees or subpatterns as it is neessary forthe kind of �ltering approah (Setion 2) used here.The proessing phase is basially the same as in any �ltering algorithm based on thepriniple of partitioning into exat searh. Though, besides a searh and a veri�ationstep a third step is used to evaluate information gained in the other two steps. For thesearh step, here, a multi pattern searh extension (like in [33℄) of Sunday's algorithm [48℄



is used. In the veri�ation step the algorithm of Chang and Lampe [9℄ is applied. How-ever, in priniple any multi pattern searh algorithm resp. approximate pattern mathingalgorithm ould serve as searh algorithm resp. veri�ation algorithm.Starting point for the algorithm is a list of searh areas initialized with [1; n℄. The�rst interval in the list of searh areas is seleted. If there is none, the loop of searhing,veri�ation and evaluation is stopped. Otherwise, a multi pattern searh for all subpat-terns is performed in this interval and stops either if one of the subpatterns was found orif none of the subpatterns ould be found in the interval. In the seond ase, the atualinterval is removed from the list of searh areas and as long as there is another intervalin the list, the searh is started anew with the new �rst interval. If a subpattern wasfound, an interval inluding this position is determined. This interval needs to be wideenough to ensure that every approximate mathing ontaining the mathed subpatternis inluded. Using the heking algorithm, all approximate mathings are found in thisinterval. These resulting hits are stored in a list olleting all hits.All information of the heking (mathing subpattern, veri�ed area, results), alledverify from now on, are stored in a list of veri�es for further use in the next step, wherethe preproessed rule information is evaluated. This step begins with updating the �rst(and urrent) searh interval of the list of searh areas by setting the new interval startto the position right behind the position where the exat mathig was found. Then threeimportant alulations are performed to gain bene�ts from the rule information. First,it is heked whether a rule (at the position of the �rst appearane of this rule) overs averi�ed area ompletely. If so, all the hits found for this verify are dupliated to everyposition of the rule (see Figure 2) and inserted into the list of hits. Seond, if a veri�edarea wasn't overed ompletely, it is heked whether a rule overs the subpattern thattriggered the veri�ation. If so, the veri�ed area is dupliated to every position of the rule(see Figure 3) and is stored in a list ontaining intervals, that need further heking. And�nally the third alulation takes the rules that are not a�eted by future veri�ationareas and removes for every rule position the area from the list of searh areas, thatde�nitively an be exluded from further searh (see Figure 4).With the modi�ed list of searh areas the searh is started anew as long as the listof searh areas is not empty.Finally, to omplete the list of hits, every element in the list of intervals that neededfurther heking is veri�ed.In the following the di�erent parts of the algorithm are desribed more formally toenable a better understanding of some details.3.2 Preproessing TextUsing the Sequitur algorithm [42℄, a grammar is onstruted from the text. Based on thegrammar, a few additional features that are essential for the algorithm are alulated:



PSfrag replaements1 nPi| {z }neighborh. | {z }| {z } RR atual positionFigure 2: Dupliation of heking results. In a former omputational step a pattern pieePi triggered a heking of a neighborhood. The neighborhood is overed by therule R. All hits found in the neighborhood an be reprodued for every futureourrene of the rule R.PSfrag replaements1 nPi| {z } | {z }neighborhood | {z }| {z } RR atual positionneeds further hekingFigure 3: Dupliation of heking information. The rule R overs only the pattern pieePi ompletely, but not the neighborhood. For every future ourrene of therule R, a neighborhood is marked to be heked later.PSfrag replaements1 n| {z } | {z }| {z } R RR atual positionFigure 4: Preventing searh on proessed rules. For every future ourrene of the ruleR a text aera (marked gray) an be exluded from further searh.



� For eah rule R the length R:length of the rule, i. e. the number of text symbolsovered by the rule, is determined.� For eah rule R, a sorted list PositionList ontaining all positions of this rule inthe text is build.� An array SR ontaining all rules is onstruted. In this array the rules are sortedregarding the position of the �rst appearane in the text (SR = sorted rules).� For eah rule R, the number inlNumber of the rule a level above, i. e. the ruleompletely inluding this rule during the �rst appearane in the text, is determined.The number is set to �1 if there is no suh rule.� An array TR is build, ontaining for eah text position the number of the last rule,that is ompletely inluded in the text up to this text position. For every ruleonly the end position of the �rst appearane is relevant. The number of the rulesorresponds to the numbers in the SR-Array (TR = text-rule).� An array TL is onstruted, ontaining for eah text position either the highestnumber of the rule, whih overs this position or, if this position isn't overed by arule, the number of the position before (TL = top level).3.3 Preproessing PatternThe pattern is divided into k + 1 subpatterns P1 : : :Pk+1. The length of the longestsubpattern is Pmax.3.4 ProessingThe proessing an be divided into the three phases initialization, searh and verify andheking, whih will be explained in the following.3.4.1 InitializationIn the initialization phase, a well-de�ned initial state for the other parts of the algorithmis reated:� List of searh areas SL = f[1; n℄g� List of all �nal hits Hitlist = ;� List of veri�es (veri�ation areas) VL = ;A verify ontains the following information: the subpattern that mathed exatly;the position in the text, where the subpattern mathed; the start and the endposition of the veri�ation in the text; the number of true veri�ed positions in thisarea; a pointer to the �rst of this true veri�ed positions in the Hitlist.



� List of intervals, that need to be heked later CL = ;� Number of the last rule proessed Rl = �13.4.2 Searh and VerifyThis phase ontains the exat searh �lter and the evaluation of the searh results. Thealgorithm ProessRules (alled in line 9) uses the rule information to dupliate searhresults if possible.Algorithm SearhAndVerify1. while SL 6= ; do2. (Exat) linear multi pattern searh of P1; : : : ; Pk+1 in [tb; te℄3. if Pi found at tx then4. posb = tx � (m+ k � 1)5. pose = tx + (m+ k � 1)6. Verify [posb; pose℄7. Insert the positions of the h resulting hits into the Hitlist.8. Append the verify (tx; i; posb; pose; h; hPos) to VL (where hPos is a pointer tothe �rst element inserted into the Hitlist)9. ProessRules10. else11. Remove [tb; te℄ from SLAs the proessing of rules in line 9 is a very ruial part of the algorithm, it's nowdesribed into more detail:Algorithm ProessRules(� proesses the rules: inferring hits and areas of no further interest �)1. Substitute the �rst area [tb; te℄ in SL with [tx + 1; te℄2. for i = Rl + 1 to TR[tx℄ (� only rules, whih appeared at least one until tx �)3. R = SR[i℄ (� get the rule �)4. if ( (R is long enough) and (R:inlNumber > TR[tx℄ ) ) then5. ChekVL(R; i)6. AtualizeSL(R)7. Rl = TR[tx℄ (� no rule needs to be onsidered twie �)Algorithm ChekVLInput: rule R, number i of R(� tries to infer further hits from position of R and the elements of VL �)1. for (tx; i; posb; pose; h; hPos) 2 VL2. if TL[pose℄ < i then (� this verify is not important anymore �)



3. Remove this verify from VL4. else5. if R:Positionlist:first < tx then (� this and none of the following veri�esis overed by the R �)6. return7. else8. if R overs [posb; pose℄ ompletely then9. Reprodue the hits of this veri�ation to all positions in R:Positionlist10. elseif R overs the subpattern Pi in this verify then11. Reprodue this verify area to all positions in R:Positionlist and insertthese intervals in CL.Algorithm AtualizeSLInput: rule R(� using positions of R to exlude intervals from SL, whih are of no further interest �)1. for tr 2 R:PositionList2. Exlude [tr + Pmax � 1; tr + R:length� Pmax℄ from SL3.4.3 ChekingIn the phases of �nal heking, all intervals olleted in CL are veri�ed. The positions ofpositive veri�ations are inserted into the Hitlist.3.5 Improvements of the basi AlgorithmIn the following some minor variations of the algorithms will be disussed.3.5.1 Minimal Length of RuleIn line 2 of AtualizeSL the area is determined, whih does not need to be examinedfurther for exat mahings of subpatterns. The size of this area depends on Pmax, thesize of the longest subpattern, and on R:length, the length of the rule. In order to ex-lude at least one symbol from further examination, the di�erene between both intervalboundaries must be greater or equal to zero, i. e.(tr + R:length� Pmax)� (tr + Pmax � 1) � 0:Transforming this inequation results inR:length � 2Pmax � 1;what is exatly one of the onditions inspeted in line 4 of ProessRules . It is obviousthat it is better to skip larger areas and furthermore that it is worth to skip shorter areas



espeially if positions are exluded, that trigger a veri�ation (i. e. onsidering only theprobabilities of the ourrene of symbols, it is easy to see, that the exlusion of shorterareas is more useful for smaller alphabets).To be able to ontrol the in�uene at this point, a parameter was introdued, that isalso inspeted in line 4 of ProessRules and that de�nes the minimal length of rules tobe proessed at all.3.5.2 Optimizing CheklistIt is possible, that in the list CL of intervals that need further veri�ation (Setion 3.4.3)some intervals are inluded, whih are already veri�ed in the end when it omes tothe �nal veri�ation. To avoid unneessary heking, veri�es an be stored instead ofremoving them in line 3 in ChekVL and thus it is possible to remove intervals that arealready treated from CL right before the list is proessed (Setion 3.4.3).3.5.3 Veri�ationThough the algorithm of Chang and Lampe [9℄ was implemented here, in general anyapproximate string mathing algorithm (like [14, 24, 47, 54℄ or any other) ould serve asveri�ation algorithm.Intuitively, it is better to selet the area [posb; pose℄, that is going to be veri�ed (line 6in SearhAndVerify), as small as possible. To determine posb and pose, �rst it is assumed,that the only knowledge is that Pi is a subpattern of P that mathes at position tx in T .With this, it ould be possible that Pi is loated at the very beginning of P and thuspose = tx +m+ k � 1 (3.1)is obtained. On the other hand, Pi ould be the last symbol of P and thus it is:posb = tx �m� k + 1 (3.2)Adding the additional information of the position px (0 � px � m � 1) of Pi in Pand the length Pi:length of subpattern Pi, a smaller interval an be obtained. For thatit is also important to know, whether the subpattern Pi is unique in P or not. In the�rst ase, still all k errors ould follow after tx, but only a maximum of m� px symbolsof Pi ould follow (inluding the position tx). Also, all k errors ould be before tx andthe �rst symbols of the pattern should be taken into aount also. This results in:pose = tx + k +m� px � 1 (3.3)posb = tx � k � px (3.4)In the seond ase (the subpattern Pi is not unique in P ), nothing an be improvedexept onsidering that Pi is loated at tx and thus at least the symbols of Pi are not



before tx. This ase results in: pose = tx + k +m� 1 (3.5)posb = tx � k � px (3.6)If a verify algorithm now ompletely proesses the given interval [posb; pose℄, it is forsure better to hoose the shortest interval (i. e. equations 3.3-3.6).4 Analytial ExperimentsIn this setion, the algorithm of Setion 3 is evaluated. For a better handling, thisalgorithm will be alled GraI (Grammar based Index) here. As GraI was intended toredue the amount of heking needed with a partitioning into exat searh �lter, thebasi �ltering algorithm of this kind (following the algorithm of Wu and Manber [58℄)was also implemented. This algorithm will be alled Pk1 (Partitioning into k+1 piees)here and uses the same algorithms for exat searhing (multi pattern extension of Boyer�Moore�Sunday [48℄) and for heking (Chang and Lampe [9℄) like GraI. Furthermore, theSLEQ (stati loations of exat q-grams) algorithm of Sutinen and Tarhio [51℄ serves asomparative indexed algorithm here, whereas the sample stepsize was hosen as h = 3and the size of q-grams was q = 3. All algorithms were implemented in Java and allexperiments were done on a 2.4 GHz Linux PC with 1 GB RAM. Within the experimentsat least 20 repetitions were done, building a basis for the standard deviation bars in the�gures.During all experiments, the searh pattern were randomly seleted from the text.The text was either random with varying alphabet sizes � or in English language (KingJames Bible onverted to upper ase, seperators exept line breaks onverted into spae)with an alphabet size of 28.In omparison to Pk1, GraI is intended to do less heking. As all algorithms sharethe same veri�ation algorithm, it is su�ient to ount the number of aesses to eithertext or pattern symbols in this algorithm. Figure 5 shows this number for a random text.It is obvious that for a very small alphabet (see Figure 5(a)) the e�et of saving symbolaesses during heking with GraI is bigger than for larger alphabets (see Figure 5(b)).The reason for this is the grammar onept, whih generates more rules (this is, wherethe algorithms starts working on), the more redundany an be found in the text. Ofourse, a random text of a small alphabet ontains more repeated areas than a randomtext of a larger alphabet.Less usage of the veri�ation algorithm has also a diret impat on the �ltratione�ieny f , whih is a qualitative better measure. Basially, there are two possible waysto alulate the e�etive �ltration e�ieny.� Filtration e�ieny regarding the text length: fn = (n� np)=n, where np denotes
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(b) � = 30Figure 5: Number of symbol aesses. n = 100000, m = 10the number of text symbols onsidered during veri�ation [51℄. fn desribes theproportion of veri�ed symbols.� Filtration e�ieny regarding the number of mathes: f = matr=matp, wherematrdenotes the number of real mathings found and matp the number of potentialmathings deteted by the algorithm [49℄. f desribes the quota of real mathingsper potential mathing.During the experiments, only f was alulated. A potential mathing was ountedevery time when the veri�ation algorithm was started. With this, f was alulated whenthe omplete text was proessed (and thus all mathings were found).Note that even if f will be less then 1 mostly, it an be a greater than 1. This isthe ase, if the veri�ation following after deteting a potential mathing identi�es morethan one real mathing and further this real mahing does not trigger another potentialmathing later.When omparing the algorithm to the basi partition into k + 1 piees �lter, theonditions for ahieving a better �ltration e�ieny an be alulated very roughly. Asthe �ltering priniple is exatly the same, it is only neessary to onsider the ases, whena potential mathing may lead to further potential or real mathings. This an onlyhappen, if the ondition R:length � 2Pmax � 1holds (see Setion 3.5.1). Not that but not every mathing is neessarily part of a rule.For a notieable e�et it is neessary that this ondition holds for the average rule.



Considering Pmax = m=(k+ 1) and the average rule length lav, the ondition islav � 2 mk + 1 � 1:Sharpening this a little bit, lav � 2mk � 1is ahieved. With the error level � de�ned as � = k=m, this an be transformed to� � 2lav + 1 : (4.1)Figure 6(a) shows the �ltration e�ieny when searhing random patterns of lengthm = 10 in a random text of length n = 100000 (alphabet size � = 4). The averagelength of the rules is lav := 6:63. Using equation 4.1 results in error levels � � 0; 262,where the �ltration e�ieny is greater than that of Pk1. In Figure 6(a) the onformityof this alulated result and the measured value an be seen, as with an error level of� � k=m = 3=10 the �ltration e�ieny is greater than that of Pk1 and also of theindexed algorithm SLEQ. Figure 6(b) illustrates the same e�et in another ase, butalso that the analysis is really very roughly. Here the average length of rules is 3:67 andwith equation 4.1 it is � � 0; 428. Thus, with m = 10 the e�et of the better �ltratione�ieny should start around k = 4.
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(b) � = 30; n = 20000; m = 10Figure 6: Filtration e�ieny. A very rude analysis (equation 4.1) alulates roughlythe point, where the �ltration e�ieny of GraI diverges from that of Pk1.Considering equation 4.1 it is obvious that GraI performs better for higher error levels�. For low error levels and longer patterns SLEQ ahieves a better �ltering e�ienythen GraI or Pk1. Figure 7 shows examples of this ase.
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(b) � = 28; n = 20000; m = 30, English textFigure 7: Filtration e�ieny. GraI does not ahieve a better �ltration e�ieny thanPk1 for low error levels and longer pattern. In fat, both algorithms an notompete with SLEQ in this ase.Not only the �ltration e�ieny is of interest, but also the searh time. Figure 8shows that GraI performs omparatively good for higher error levels (a higher numberof errors k for a �xed m).A better �ltration e�ieny does not always mean a better searh performane. Usu-ally, the prie for this better �ltration e�ieny are higher expenses in other parts ofthe algorithm. Of ourse, in GraI the text is preproessed, but this takes only lineartime and is done one before performing several searhes. Other expenses result fromthe management of additional information.If there is a lot of additional information to manage, the searh proess is sloweddown. This is the main drawbak with GraI that for longer texts this e�et of slowingdown ours. Figure 9 shows the same searhes in the same English text, but restritedto di�erent text lengths. For the longer text (Figure 9(b)) GraI performs worse than forthe shorter text.This leads to the bene�ts of the parameter introdued in Setion 3.5.1 to allow skip-ping of shorter rules during the proess of evaluation. The minimal length needed fora rule to be used for dupliating information (see Setion 3.1) also ontrols diretly theamount of additional information that is managed. Figure 10 illustrated the e�et whenthe minimal length of rules is varied. Of ourse, the performane depends on the averagelength of rules in the grammar. If the minimal length of rules seleted is a lot greaterthan the average length of rules in the grammar, not muh an be gained, as only a veryfew rules will in�uene the alulation. In Figure 10 it an be seen that the overall bestperformane an be reahed with a minimal rule length lose to the average length of
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(b) m = 60Figure 8: Searh time. Time needed for searhing pattern of di�erent lengths in a partof the King James Bible of length n = 20000.
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(b) n = 100000Figure 9: Expenses for management of additional information. In the longer English text,searhing the same pattern (m = 10) takes more time.



rules in the grammar.
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Figure 10: E�et of di�erent minimal rule lengths. Approximate mathing of short pat-tern (m = 10) in English text of length n = 50000. The average length ofrules in the grammar of the text is 7.37.5 Conlusions and OutlookIn this paper a �ltering algorithm for approximate string mathing is presented. Thealgorithms is based on the priniple of partitioning into exat exat searh with the in-tention to redue the overall amount of heking. Using the Sequitur grammar, this aimwas ahieved for the �ltering approah with partitioning the pattern into k + 1 piees.It was also shown that ompared to the basi approah a better �ltration e�ieny isreahed for higher error levels. The algorithms perform omparatively good for a highernumber of errors, but for long texts the expenses for the management of additional infor-mation dominate. Within small limits, this in�uene an be ontrolled with a parameterof the algorithm.To remove the in�uene of management osts in longer text, the text ould be devidedin bloks that are proessed seperately. Then, rule information should be dupliated onlywhen proessing of a blok is �nished.
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