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Pathwork Veri�ation in a FilteringApproah to Approximate PatternMathingChristoph J. RihterUniversity of DortmundDept. of Computer Siene44221 Dortmund, Germanyhristoph.rihter�s.uni-dortmund.de Wolfgang BanzhafMemorial University of NewfoundlandDept. of Computer SieneSt. John's, NL, Canada A1C 5S7banzhaf�s.mun.aA veri�ation method for the partitioning into exat searh �ltering ap-proah in approximate pattern mathing will be shown here. We will al-ulate the limits of appliability and demonstrate the usefulness for longerpatterns and smaller alphabets (e. g. DNA), when searhing with high errorlevels.Keywords: algorithms, approximate pattern mathing, �ltering, veri�ation1 IntrodutionApproximate pattern mathing is the problem of �nding all positions in a text T , wherea pattern P mathes with at most k errors. In a more formal way, the problem ofapproximate pattern mathing an be de�ned as follows: Given a text T = t1 : : : tn, anda pattern P = p1 : : : pm (ti; pj 2 �), return the set fjx �P j; T = x �Py ^ d(P; �P ) � kg,where x; �P and y are substrings of T , j:j returns the length of a string and d(P; �P) givesthe edit distane between P and �P . The edit distane between two strings haraterizesthe number of transformation operations (insertion, deletion and replaement) that areneessary to transform one string into an other one.Sine this problem has a great variety of appliations in di�erent areas like omputa-tional biology, text retrieval, and others [4, 6, 10℄, a lot of algorithm have been designedto solve this problem. Good overviews are given in [6℄ and [9℄.The general solution priniple for this problem utilizes dynami programming andtakes O(nm) time [12, 13℄. Based on this priniple, many improved algorithms havebeen developed ahieving up to O(kn) in the worst ase and O(kn=p�) in the averagease, where � is the size of the alphabet � (like the algorithm of Chang and Lampe [2℄).A more advaned lass of algorithms for approximate pattern mathing solves theproblem in two phases. The idea of the �rst phase, the �ltering or searh phase, is to1



identify areas in the text, where an approximate mathing possibly may our (this mayhappen via disarding areas, where no approximate mathing an appear at all). Theseond phase, the heking or veri�ation phase, then heks all these areas separatelywith one of the basi algorithms for approximate pattern mathing. While �rst phasean be done in O(n), the veri�ation ost of every area is basially quadrati during theseond phase. Thus, the appliability of a �ltering algorithm depends on the dominationof the �rst phase. Naturally, for higher error levels � = k=m more veri�ation in theseond phase is expeted. To be more robust to higher error levels, it is neessary toredue the amount of veri�ation.There are a few approahes that deal with the issue of lowering the share of veri�a-tion. Besides these approahes, in setion 2 the spei� kind of �ltering used in this paperis disussed brie�y also. In setion 3 we present the approah of pathwork veri�ation,whih basially tries to avoid heking of overlapping areas. This approah is general inthe sense that every approximate mathing of the pattern within the given interval isfound, but it is easily extendable to return new hits only, if the text is proessed linearly.Pathwork veri�ation is analyzed in setion 4, before we draw onlusions in the lastsetion.2 Related WorkTo improve �ltering algorithms with lowering the share of the veri�ation phase, di�erentideas has been presented. Giegerih et al. [3℄ mixed both phases of the �ltering algorithm.With the information of the searh phase about the maximal number of errors left, theheking phase an be stopped prematurely if in the progress of heking the atualnumber of errors shows that an approximate mathing is not possible anymore.With hierarhial veri�ation another idea was presented by Navarro and Baeza-Yates[5, 7, 8℄. The basis of this method is a simple fat: If a pattern of length m matheswith k errors and the pattern is split into j piees, at least one of these piees matheswith bk=j errors. For hierarhial veri�ation, the pattern is reursively halved and thussplit into 2j piees until the piees are small enough to be searhed with bk=2j errorsonveniently. If one of the piees is found, for omplete veri�ation the proess of halvingis reverted and level by level two piees are united and heked for an ourrene withtwie as many errors as before. If on every level the veri�ation is positive, the ourreneof the whole pattern is veri�ed on the last level. In ase of a negative veri�ation on anylevel, the whole veri�ation proess is stopped, beause it is sure that the pattern doesnot our with at most k errors in the text a this position.A di�erent approah to redue the overall amount of heking was presented in [?℄.There, a grammar of the text is used to identify repetitions that only needs to be hekedone. The same grammar is also used to skip searhing in some areas of the text.Though it may be di�ult in some ases, in general all these approahes ould be2



ombined with any �ltering method. Here, we work with a partitioning into exat searh�lter. The �ltering phase is determined by the same fat that builds the basis for hi-erarhial veri�ation. The pattern is split into k + s piees and eah of the piees anbe searhed with b kk+s  errors. For s � 1, exat searh of eah piee is possible. Thiskind of �lter was proposed by Wu and Manber [15℄ with s = 1 and is taken in this paperalso. Other than Wu and Manber, who used an extension of shift-or [1℄, we use a multipattern variant of the Boyer�Moore�Sunday algorithm [14℄ for exat searhing. Here,the algorithm of Chang and Lampe [2℄ is applied in the veri�ation phase, though inpriniple any approximate pattern mathing algorithm ould be used.3 Pathwork Veri�ationThe general idea of pathwork veri�ation is to extend the veri�ation algorithm for abetter handling of overlapping alls. Whenever an exat mathing subpattern ould beloalized in the �ltering phase, the veri�ation algorithm is alled to hek a ertain area.Naturally, when the exat mathings of two subpatterns are too lose to eah other, theveri�ation areas may overlap. In the following, with pathwork veri�ation a method isdesribed that onsiders these overlaps.Assuming the subpattern Pi of P mathes at position t in T . Without any additionalknowledge, the area [posb; pose℄ that is neessary to be veri�ed an be determined asfollows. It ould be possible that Pi is loated at the very beginning of P and thuspose = t + k +m� 1 (3.1)it is obtained. On the other hand, Pi ould be the last symbol of P and thus it is:posb = t � k � (m� 1) (3.2)Considering additionally the length jPij of the mathed subpattern, the start of theinterval an be de�ned more preise as at least the symbols of Pi follow t. This resultsin: posb = t � k � (m� jPij) (3.3)If a veri�ation algorithm is alled frequently with overlapping areas, heking thegiven interval [posb; pose℄ ompletely results in multiple veri�ation of some positions. Toavoid this, here, the idea is to remember the alulation state and the results of the lastall of the veri�ation algorithm and to reuse this information to redue the alulatione�ort if possible.During the alulation of an approximate mathing with a pattern of length m, everystate loses its in�uene after m � 1 positions. For a seamless ontinuation of the lastveri�ation this in�uene must not exists anymore during the atual veri�ation at the3



end position of the last veri�ation. Assuming the last veri�ed area was [oldposb; oldpose℄,the ondition for the possibility of taking advantage of overlappings with opying hits is(oldposb � posb) ^ (posb � oldpose �m+ 1) ^ (oldpose < pose): (3.4)Considering this situation, there are four di�erent areas (f. Figure 1):� [oldposb; posb � 1℄: This area is not of interest for the atual veri�ation.� [posb; posb + m � 2℄: If hits were found in this area during the last veri�ation,the in�uene of former positions may be the reason and so this area needs to beveri�ed separately (without onsidering overlaps). If no hits were found during thelast veri�ation, this area an be ignored.� [posb +m� 1; oldpose℄: If hits were found in this area during the last veri�ation,these hits an be opied for the atual veri�ation.� [oldpose + 1; pose℄: Nothing is known about this area, so the veri�ation an beontinued here using the �nal state of the last veri�ation.PSfrag replaementsoldposb posb posb +m� 1 oldpose posem�1 positionsz }| {Figure 1: Pathwork veri�ation. The in�uene areas of the previous veri�ation areolored in gray. In the light gray area, hits from the previous veri�ation anbe opied. If there are hits in the dark gray area, this area needs to be veri�edseparately again.Integrating the distintion of these areas into a basi approximate pattern mathingalgorithm, a new veri�ation algorithm is obtained, whih onsiders overlapped hekingareas. This resulting algorithm provides exatly all approximate mathings between thepattern and the text in the given area.4 AnalysisIn this setion, pathwork veri�ation will be evaluated. First, we estimate where path-work is better than plain veri�ation with the basi algorithm and we analyze its per-formane. Then, the slightly modi�ed version of hierarhial veri�ation is explained,whih �nally is used for the omparison with pathwork veri�ation.4



In general, any approximate string mathing algorithm ould serve as basi veri�a-tion algorithm. Here, the algorithm of Chang and Lampe [2℄ was implemented. Both,hierarhial and pathwork veri�ation were implemented as exhaustive heking algo-rithms, i. e. every approximate mathing between the given text interval and the patternis reported.The algorithms were implemented in Java and all experiments were done on a 2.4 GHzLinux PC with 1 GB RAM. Within the experiments at least 20 repetitions were done,building a basis for the standard deviation bars in the �gures. The searh patterns wereseleted randomly from the text. The text was either random with varying alphabetsizes �, or DNA (the omplete genome of Haemophilus in�uenzae Rd, 1.77 MB in size,70 haraters per line) with an alphabet size of four, save for a few exeptions.Compared to just plain veri�ation of the given interval [posb; pose℄, pathwork veri-�ation is of advantage, if overlappings our, i. e. if it is posb � oldpose with regard tothe last interval heked [oldposb; oldpose℄. Using the interval limits of equations 3.1 and3.2, we ahieve tnew � told + 2m+ 2k� 2: (4.1)In priniple, for pathwork veri�ation to outstand plain veri�ation, only two onse-utive alls of the veri�ation algorithm on intervals ful�lling ondition 4.1 are neessary.If the average distane of two exat mathing subpatterns falls below 2m+ 2k � 2, ad-vantage an be taken from the overlappings about every time, the veri�ation algorithmis alled. Assuming an equal distribution of text haraters and with a subpattern lengthof m=(k+ 1), the average distane between two of the k+ 1 exat mathing subpatternsis tnew � told = � mk+1k + 1 : (4.2)Thus, ondition 4.1 an be transformed to� mk+1 � (2m+ 2k � 2)(k+ 1): (4.3)Figure 2 shows random text examples illustrating this ondition. In the examples, itis obvious that pathwork veri�ation outstands plain veri�ation even before the limitgiven with ondition 4.3 is reahed for k.If two onseutive veri�ation intervals [oldposb; oldpose℄ and [posb; pose℄ are losetogether, some results of the �rst interval also hold for the seond interval and thus anbe opied (f. Figure 1). This happens forposb +m� 1 � oldpose: (4.4)Using the interval limits of equations 3.1 and 3.2 and the average exat mathing distaneof equation 4.2, we ahieve � mk+1k + 1 � m+ 2k � 1 (4.5)5
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(b) � = 5; n = 1000000; m = 30Figure 2: Condition 4.3 in di�erent random text searhes. The ondition is ful�lled fork � 4:1342 in (a) and for k � 7:2154 in (b).as the ondition for reusing of results.Furthermore, the most restriting limit is reahed, when the interval [posb; posb+m�1℄ needs to be heked everytime. This interval is heked only, if a hit was already foundwithin this interval, otherwise it is skipped. A hit exists in this interval, if the patternmathes in [oldposb; posb + m � 1℄ with at most k errors. The average edit distanebetween two patterns of length m is between m(1� e=p�) and 2m(1� 1=p�) [6℄ and itis onjetured that the true value is m(1� 1=p�) for large � [11℄. Sine the interval isapproximately of size m (for large error levels k=m it beomes m� 1), there is a hit inthe interval approximately if it is m(1� 1=p�) � k: (4.6)Figure 3 shows exemplarily the general runtime performane of pathwork veri�ationand the alulated limits. Obviously, the impat of ondition 4.5 an not be notied,beause only hits are opied for the onsidered interval. Sine the number of hits inreaseswith the error level, no lear in�uene at a ertain point an be expeted.To ahieve expeted linear time, for a �ltering algorithm it is important that theveri�ation phase does not dominate, i. e. the overall veri�ation osts are O(n). Path-work veri�ation is alled for every of the k + 1 exat mathing subpatterns of lengthmk+1 . At every text position, the probability for this to happen is (k + 1)=� mk+1 . Assum-ing pathwork veri�ation is used (i. e. ondition 4.3 holds), assuming further interval[posb; posb +m� 1℄ does not need heking (i. e. ondition 4.6 holds) and negleting theosts for opying hits in the interval [posb +m� 1; oldpose℄ (f. Figure 1) the osts per6
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(b) � = 100; m = 300; n = 100000Figure 3: In (a) the limit for k ful�lling ondition 4.3 is marked with the left plumb line,while the right plumb line marks ondition 4.5. Condition 4.6 is ful�lled fork � 50. In (b) only ondition 4.6 is marked showing the general onformitywith the measured result.all are quadrati in the length of the veri�ed area and thus they are (� mk+1 =(k + 1))2.To ahieve linear expeted time, we should havenk + 1� mk+1 � � mk+1k + 1�2 � n (4.7)whih is equivalent to � mk+1k + 1 � : (4.8)With m=(k+ 1) � 1=� it is � 1�k + 1 � : (4.9)To solve for �, the following weaker inequality is used (replaing k by m� 1):� 1�m � : (4.10)Together with equation 4.6 this results in a gross approximation of the interval wherelinearity is expeted (for any onstant ):1log� m � � < 1� 1p� : (4.11)7



Of ourse, the limit for linearity of the partitioning into k + 1 piees �lter still holdsadditionally and thus [6℄, linearity is also expeted for� < 1=(3 log� m): (4.12)Considering equation 4.11, for pathwork veri�ation reasonable values of � arereahed for small alphabets and longer patterns.To integrate hierarhial veri�ation (setion 2) into the general �ltering approah, aslight modi�ation was neessary. Originally, hierarhial veri�ation suessively halvesthe pattern until the subpatterns are small enough to be searhed with an appropriatenumber of errors. Sine the smallest subpatterns are already given here with splitting thepattern into k+1 piees, these subpatterns are suessively melted until the whole patternis reassembled. For melting, the idea of suessive halving is reverted, i. e. in every stepthe subpattern results from a alulation, dividing the whole pattern into a power of 2piees, where eah piee onsists of a number of smallest subpatterns, originating fromthe k + 1 partitioning.A pratial problem with hierarhial veri�ation that needs to be onsidered, is thepossible ambiguity of basi subpatterns. If a basi subpattern exists more than one inthe pattern, hierarhial veri�ation an not be stopped as long as not every possibleourrene is heked. If, for instane, the pattern aaxxaaaa was split into 4 piees(k = 3) and aa was found without error, it is not only neessary to hek for aaxx withb3=2 = 1 errors, but also aaaa.For hierarhial veri�ation linear time is expeted for� < 1=log�m (4.13)when used with the partitioning into k + 1 piees �lter [6, 5, 7℄. This limit equals thelower bound of the interval given in equation 4.11, when setting  = 1.Figure 4 shows pathwork and hierarhial veri�ation on DNA data with a searh-pattern of length m = 300. The linear time limits given in equations 4.12 and 4.11 easilyan be identi�ed in the run of the urves. Moreover, this example learly shows the goodperformane of pathwork veri�ation on longer patterns and smaller alphabets.5 ConlusionsA veri�ation method making the partitioning into exat searh �ltering approah inapproximate pattern mathing appliable for higher error levels � was presented. Further,we have alulated and demonstrated the limits of linearity when using this method. Themethod of pathwork veri�ation is espeially useful for longer patterns and basiallysmall alphabets like it is in DNA data.We have seen that the linearity when using pathwork veri�ation for higher errorlevels starts where linearity for hierarhial veri�ation ends. Thus, it is an obvious idea,8
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Figure 4: Pathwork and hierarhial veri�ation on DNA data with a longer pattern(m = 300). (a) The leftmost plumb line gives the limit for � for normal �ltering(equation 4.12). The middle line marks the limit given in equation 4.13 whihequals the lower bound of the interval in ondition 4.11. The upper border ofthis interval is marked with the rightmost line. (b) Zoom in on the �rst partof the graph shown in (a).to swith at least between these methods depending on the atual error level to ahievean overall good �ltering algorithm.Referenes[1℄ R. A. Baeza-Yates and G. H. Gonnet, A new apporah to text searhing,Communiations of the ACM, 35 (1992), pp. 74�82. Preliminary version in ACMSIGR'89.[2℄ W. I. Chang and J. Lampe, Theoretial and empirial omparisons of approxi-mate string mathing algorithms, in Proeedings of the 3rd Annual Symposium onCombinatorial PatternMathing (CPM'92), A. Apostolio, M. Crohemore, Z. Galil,and U. Manber, eds., vol. 644 of LNCS, Tuson, Arizona, USA, April/May 1992,Springer, pp. 175�184.[3℄ R. Giegerih, F. Hishke, S. Kurtz, and E. Ohlebush, A general tehniqueto improve �lter algorithms for approximate string mathing, in Proeedings of theFourth South Amerian Workshop on String Proessing (WSP'97), R. Baeza-Yates,ed., Valparaiso, Chile, November 1997, Carleton University Press, pp. 38�52.9
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