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Abstract. In this study the advantages of statistical gene selection are combined
with the power of Genetic Programming (GP) to build classifiers for assigning gene
expression microarray data samples to categories characteristic of certain cell states.
To that end we implemented different statistical measures in a program called GE-
NEACTIVATOR and tested their applicability to gene selection. Subsequently we
used the general purpose GP-system DISCIPULUS to train classifiers. We applied
our approach to four different human cancer gene expression datasets publicly avail-
able, including multi-class sets. The results indicate that using gene selection and GP
as implemented in DISCIPULUS is an appropriate method for gene expression data
analysis.

1 Introduction

DNA microarrays provide insight into gene expression levels in cells [4, 38]. They can be
used for cancer diagnosis, since gene expression patterns in tumor tissue differ from those
in healthy tissue, reflecting the sets of genes active in the different tissue types. Because
thousands of genes can be examined simultaneously with microarrays, new opportunities
arise by analyzing these patterns to reveal cancer types and their state of progress enabling
better treatment. Even new tumor classes might be discovered by analyzing data gained
from microarrays.

The key problem of evaluation of gene expression data is to find patterns in the appar-
ently unrelated values measured. With increasing numbers of genes spotted on microarrays
visual inspection of these data has become impossible and, hence, the importance of com-
puter analysis has substantially increased in recent years. Well-studied datasets of different
phenotypes are publicly available to train and evaluate supervised pattern analysis algo-
rithms for classification and diagnosis of unknown samples.

Such datasets are tables where the samples are arranged in columns and the expression
values of genes are represented in rows. In this article the data are represented as n × m
matrices where n is the number of samples and m is the number of genes. So for each
sample an m-dimensional vector of expression values is available, one entry for each gene
i with 1 ≤ i ≤ m. For each gene, on the other hand, there exists an n-dimensional vector
with one expression value for each sample j with 1 ≤ j ≤ n. Furthermore, each dataset
contains an additional vector of size n which holds the class label of samples describing their
phenotype, e.g., benign or malignant status.

A gene expression profile obtained from a microarray is simply a snapshot of the current
state of the tissue under study reflecting expression intensity of genes controlled by processes
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Fig. 1. General approach for classification of gene expression data. After an initial separation of
data into a training and an evaluation set, the selector algorithm determines relevant genes and the
classifier (after running the training algorithm on it) produces a prediction of both seen and unseen
samples.

like cell cycle, metabolic pathways, state or age of the cell. Only some of the genes examined
will be usually related to disorders like cancer or other diseases. Thus, the set of relevant
genes has to be extracted from the entire set of genes and often approaches are used similar
to the one illustrated in Figure 1: The complete set of genes is first reduced by a selector

to a so-called prediction set of relevant genes for diagnosis. Hence, a selector has to be
generated that selects only those genes which show high correlation with the phenotype of
interest. Often, the statistical criterion of the signal-to-noise ratio has been implemented in
selector algorithms. Subsequently, only the selected genes are used to build classifiers for
diagnosis. Such classifiers have been created by techniques based on k-nearest neighbors [32],
hierarchical clustering [1], bi-clustering [11], weighted voting [20], support vector machines
[10, 21], or Bayesian networks [17, 23], to name a few prominent ones. Usually classifiers are
evaluated on a separate subset of data which consists of samples not used for training.

Evolutionary Algorithms (EA) have been used for solving problems of both selection
and prediction in microarray analysis. GAs have been employed for building selectors [13,
28–31]. Each component of the representation corresponds to one gene and the state of the
component denotes whether the gene is selected or not.

GP [5, 25] on the other hand, as the most complex form of EAs, has been shown to work
well for recognition of structures in large data sets. GP has been applied to microarray data
to generate programs that reliably predict the health/malignancy states of tissue, or which



type of cancer is present in the tissue. [34] used GP to classify microarray data introducing
a Symbolic Discriminant Analysis (SDA). SDA avoids the disadvantage of linear discrimi-
nant analysis, where the discriminant functions have to be specified. In their approach the
selection of genes and discriminant functions is performed by GP automatically. The system
has been used for analysing microarray data of human leukemia. The same authors used GP
to identify autoimmune disease based on microarray data [35]. They also modified SDA to
test the consistency of leave one out cross-validation (LOOCV) for the selection of genes. In
LOOCV one sample is removed from the dataset. The other samples are used to generate
a classifier which is applied to classify the sample removed. The process is iterated for all
samples and results are averaged. Moore used the selection rate during LOOCV as a fitness
value for the relevance of each gene. Relevant genes were then turned over to a second SDA
classifying the samples (reviewed in [33]). [37] extended this approach with more complex
SDA functions.

A different form of GP with programs as Boolean expression rules was used for analyzing
6 functional classes of yeast genes by [19] and a 4-class cancer set by [14]. Tree GP was used
by [26] to identify embryonal tumors of the central nervous system. LOOCV was performed
10 times for each partitioning and the impact of every gene was measured like in [35]. In
[22] a rule-based approach was used similar to [14] and [19], but mixed with statistical gene
selection to analyze lymphoma data. In that contribution the GP system used the 30 genes
with the best signal-to-noise ratio.

In this article we combine statistical gene selection and a GP system for classification.
This two-step procedure increases the speed of training, since all genes not showing strong
correlation with the examined phenotypes are removed. Reducing the number of genes helps
to avoid the negative effects of overfitting. Here we tested several different statistical mea-
sures on their applicability for gene selection. We applied this approach to four different sets
of cancer data containing between 2 and 14 different tissue classes.

2 Material and Methods

We perform a two-step procedure consisting of (i) a gene selection step and (ii) a training
and classification step. The selection step is implemented in a program called GENEAC-
TIVATOR while training of classifiers is performed with DISCIPULUS [15, 16]. The data
flow is shown in Figure 2. The full dataset is divided into two subsets: The training set

and the evaluation set. The former is used for gene selection with GENEACTIVATOR to
create a reduced training set which is fed into DISCIPULUS for training. The latter is kept
separate to evaluate the results of our approach. For technical reasons a reduced evaluation
set is produced containing only those genes selected by GENEACTIVATOR based on the
training set. This set is employed for evaluating the classifier, but it is neither utilized by
the gene selection process nor by the training procedure of DISCIPULUS.

2.1 Gene selection

GENEACTIVATOR selects genes with a high relevance from the training set to discrim-
inate between phenotypes. To this end, different procedures were used to determine the
relevance of a gene. Every gene selection procedure calculates a relevance score for all m
genes. Genes with the highest scores are selected to generate a new reduced matrix. Seven



DISCIPULUS

GENEACTIVATOR

Classifier (Prediction set
Evaluation set

genes only)

classifier
Apply

Remove

~1/3

Training set

Remove all
genes which
are not part
of the
prediction set

selector
building a
set for
training
Use the

(Prediction set
Training set

genes only)

~1/2~1/2

Remove

~2/3

Complete

dataset

Evaluation set

Internal Internal

training set validation set

Fig. 2. Data flow of the approach studied here. Selection of relevant genes is done by GENEACTI-
VATOR, training of classifiers is done by the GP tool DISCIPULUS, which uses an internal training
and validation set.

different selection procedures are evaluated here to compare their relative performance on
selecting relevant genes:

1. calculating the interval range (IR) of all n expression levels of a gene,
2. the standard deviation (SD) of all n values,
3. a two-partition (2P, see below) criterion,
4. the mean difference (MD) between the expression values of both classes,
5. the signal-to-noise ratio (S2N) (c.f. [36]),
6. the Fisher criterion (FC) [7] and
7. a cluster count criterion (CC, see below).

Methods 1-3 are unsupervised, while methods 4-7 are supervised using the class labels
of samples for the selection step. GENEACTIVATOR is used for binary problems where the
set of samples can be separated into class-0 and class-1 samples. In Section 2.3 the handling
of data with more than two classes is explained.

The criteria 2P and CC are newly introduced in this article. The following formula is
used to calculate the 2P relevance of a gene x:

R2P(x) =
µ+(x) − µ

−
(x)

σ+(x) + σ
−

(x)
, (1)

where µ+(x) is the mean of all expression levels larger than the overall-mean of all n expres-
sion levels, while µ

−
(x) is the mean of all expression levels smaller the overall-mean. Values
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Fig. 3. Two examples for a sorted set of samples from genes with low (left) and high (right) relevance
scores with respect to the cluster count criterion: Each circle stands for the expression level of a
particular gene in a sample, sorted from low to high expression levels. Black and white indicate
class labels, 0 and 1. Gene a has a score of 2, gene b has the best possible score (for 8 samples) of 6.

Table 1. Function set of DISCIPULUS.

Simple arithmetic operations Complex operations

Addition Root
Subtraction Trigonometric
Multiplication Comparison
Division Condition

Data transfer (between registers)

σ+(x) and σ
−

(x) are the corresponding standard deviations. R2P (x) measures the ability of
gene x to divide the n values into two clusters.

RCC (x) can be computed with the following algorithm :

1. Sort all n expression values of x according to their expression level. Let xi be the ex-
pression level of x in sample i after sorting and let c(xi) be the class label of sample i
after sorting.

2. LET s = 0

3. FOR i = 1 TO n − 1:
IF c(xi) = c(xi+1) THEN s = s + 1

4. RETURN s

The variable s is used as the relevance score RCC (x) for gene x. If s is high, the gene
is assumed to have a high ability to differentiate the two classes, since the expression levels
form bigger clusters, whereas a gene with a low value of s contains more small clusters.
Examples are given in Figure 3. s should be normalized by the number of samples in the set
if different sets are to be compared.

All genes are ordered by their relevance scores R(x) and those with the highest relevance
scores are selected. If not stated otherwise, we always select the 20 most relevant genes.
It is our experience that this choice provides a good tradeoff between optimization time,
accuracy and overfitting of data. Different numbers of genes showed inferior results (data
not shown here).

2.2 The GP system DISCIPULUS

DISCIPULUS is a general purpose GP tool [15, 16] which can be used for regression and
binary classification problems. The software uses GP to breed a population of small programs
able to, in this case, classify the microarray data. Therefore, we refer to the programs created
as classifiers.



Table 2. Example classifier program evolved with DISCIPULUS, containing addition, substraction,
multiplication, division and power.

L0: f[0] = f[0] + v[2];

L1: f[0] = f[0] - v[1];

L2: f[0] = f[0] / v[8];

L3: f[0] = f[0] - v[6];

L4: f[0] = pow(2,f[0]);

L5: f[0] = f[0] * v[2];

Representation of individuals A DISCIPULUS classifier is very similar to an assembler
program consisting of simple arithmetic operations, comparisons, and conditions on regis-
ter data. Some more complex functions are available, too (see Table 1). Classifiers can be
conveniently converted into C- or JAVA-code to be used in other programs. Table 2 shows
a short example of a classifier program. Calculation register f[0] is initialized with 0. v[i]
denotes the expression level of gene i in the current sample, where i is the index of the gene
selected. In this example classifier, expression levels of genes 1, 2, 6 and 8 are used with
mathematical operations. The result in f[0] is returned and used for class prediction: If the
value in f[0] is smaller than the threshold of 0.5, the sample analyzed is predicted to be of
class-0, and of class-1 otherwise.

Training procedure DISCIPULUS implements the special training procedure illustrated
in Figure 4. The entire optimization process is separated into a series of independent opti-
mization processes, called runs. The 30 best classifiers of all runs are collected allowing not
more than 5 to be added per run. Performing many independent runs with varying initial
parameter settings (see below) increases the probability to find appropriate classifiers, since
GP is a heuristic method. The training set can be split into an internal training set and an
internal validation set with the former being used for training while both being applied for
scoring the 30 best classifiers. Although this feature can reduce overfitting, for a small num-
ber of samples in the dataset, this option will reduce the information utilized for training
due to an exclusion of the validation set from the actual training.

The number of correctly classified samples (the hit rate) from the training set is used
as primary fitness criterion. In the event of a tie, the distance between threshold and the
numerical value is used as a second fitness criterion. Tournament selection reduces 4 to 2
classifiers, which are subsequently subjected to crossover and mutation.

In addition to single-program classification, DISCIPULUS also provides teams of classi-
fiers. Classifiers with best results are collected into a team with one vote for each member.
The class with the majority of votes is selected as the team answer. It has been shown that
a team is frequently better than any particular member of the team [8]. We used teams with
nine individuals each for multiclass prediction shown in the section on experiments below.

Parameter settings DISCIPULUS provides a large number of parameters. Since the op-
timal parameter setting is typically not known, parameters are initialized for each single
run with a randomized value around default values at the outset. Later, in order to increase
the probability of choosing good values, default values are updated with the parameters of
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Table 3. Mean values of GP parameters. Randomization was used to assign the actual parameters
(see text).

Parameter Value

Population size 500
Mutation frequency 95%
Recombination frequency 50 %
Max program size 512 bytes

the best runs so far, thus implementing a racing algorithm (described in [16]). Important
parameter values are given in Table 3. If not stated otherwise, we used these default values.

Class weights If one class is represented by only a small fraction of samples from the
training set, it is recommended to assign different weights to the classes. Otherwise the
selective pressure to learn features of the smaller class might be too low. Let h0 be the
rate of correct predictions on the class-0-samples and let h1 be the rate for class-1-samples
accordingly. These hit-rates are modified by the weights w0 and w1 (quantified below) to
get a weighted hit-rate:

Weighted Hit-Rate = (h0 · w0) + (h1 · w1) (2)



Table 4. Comparison of datasets used. The last two columns show the number of samples in the
training and evaluation set. Notice that there is no explicit evaluation set for colon data provided.

Set #Classes #Genes #Training set #Evaluation set

COLON 2 2000 62 -
ALL/AML 2 7129 38 34
SRBCT 4 6567 63 25
GCM 14 16063 144 54

The resulting weighted hit-rate is used to measure the fitness of a classifier.

2.3 Dealing with multi-class sets

Both GENEACTIVATOR and DISCIPULUS were designed to handle binary classification
problems. Hence we have implemented a one-versus-rest (OVR) method (c.f. [36]) for mul-
ticlass problems. To that end we constructed binary classifiers for each class i, that can
distinguish this class i from the rest of the samples. At first all relevant genes were selected
by GENEACTIVATOR for each class i with class labels for all samples of class i set to 1, for
all remaining samples set to 0. This process was iterated for each class and DISCIPULUS
was applied to all selected sets separately.

With increasing number of classes, however, the ratio of positive samples decreases.
As explained above this decreases the selective pressure on classifiers to recognize positive
samples while training, which leads to poor hit-rates. In order to compensate for this effect
we used the following class weights: Let Φ be a dataset and let Φi be the subset of all samples
belonging to class i. The weight of class i is calculated by:

w(Φi) =
100

2 |Φi|
(3)

Hence, if a classifier for class i is constructed, w1 = w(Φi) (positive for class i) and the
weight of all remaining samples, which do not belong to class i, is w0 = 50/(|Φ| − |Φi|)
corresponding to Equation 2. With these weights, the importance of positive and negative
samples is equal. The weights can be interpreted as percentages, so that both classes have
50% impact on the fitness calculation.

In order to predict the class of a sample, classifiers for all classes are applied to that
sample. Contradictory results, e.g., two classifiers returning a positive output, were treated
by a simple post-processing procedure. The best teams of size nine for each class were
analyzed for the number of team members making a positive prediction. The class with
most positive votes wins the classification. If more than one class have maximum number of
positive votes the sample is considered as ‘undecidable’. In the event that no class garners
more than one vote the sample is classified as ‘miscellaneous’.

2.4 Datasets

We examined four different publicly available datasets of cancer tissues (c.f. Table 4). Two
of these are binary class datasets: A colon set with healthy and malignant colon tissues by
[1] and a set with two subtypes of leukemia (ALL/AML) by [20]. The remaining two data
sets are multiclass datasets, (i) a set of four types of small round blue cell tumors (SRBCT)



Table 5. Results on the two-class datasets, Colon and ALL/AML: Columns show hit-rates of the
best classifiers on the corresponding evaluation set (mean hit-rates of the 30 best classifiers). The
results of cross-validation are shown in the LOOCV columns. LOOCV results are percentages of
correct predictions over all 30 best classifiers of each sample left out. The numbers of samples that
had at least 15 out of 30 classifiers with incorrect prediction are given in brackets.

Colon ALL/AML
Selector Hit-rate LOOCV Hit-rate LOOCV

IR 77.42 (64.62) 79.68 (12) 64.71 (51.77) 61.67 (12)
SD 74.19 (63.66) 78.76 (11) 79.41 (68.33) 79.47 (7)
2P 83.87 (73.01) 80.16 (9) 97.06 (89.41) 85.00 (6)
MD 87.10 (77.31) 79.78 (10) 94.12 (89.41) 92.11 (2)
S2N 90.32 (77.74) 80.22 (11) 97.06 (89.71) 90.53 (1)
FC 90.32 (77.10) 80.05 (10) 94.12 (82.25) 91.84 (1)
CC 77.42 (67.63) 83.60 (8) 97.06 (83.24) 88.51 (2)

[24] and (ii) the GCM set with 14 different classes of tumors described in [36]. As shown
in Table 4 these sets contain between 2,000 and 16,063 genes, but only a small number
of samples (38 to 144). For ALL/AML, SRBCT, and the GCM set the partitioning into
training and evaluation set is described in the publications referenced. In order to compare
our results we used the original partitioning. For the colon data no partitioning has been
described, hence, we assigned samples randomly to a training and an evaluation set with 31
samples each, with the constraint that both classes are represented with an equal number of
samples in both sets. A particularity is found in the SRBCT evaluation set which includes
five samples not belonging to any of the four classes in the training set. Thus, a test can be
made for how the system handles a totally unknown class.

3 Experiments and Results

3.1 Binary data

The primary goal of experiments with binary datasets was to evaluate the different gene se-
lection methods. We applied all seven methods to both binary datasets and selected the best
20 genes of each. Each analysis comprised 300 independent GP runs, each being terminated
after 300 generations of fitness stagnation.

The training set was assigned to both DISCIPULUS internal training and validation sets
allowing to use the full information present in the original set. After training the resulting
30 classifiers where applied to the evaluation sets. Table 5 presents the results for the Colon
and ALL/AML datasets. Hit-rates and mean hit-rates are listed for the best classifiers. The
results show that for all selection strategies except IR the method performed better on the
ALL/AML data with a hit-rate of up to 97.06%, while on the Colon data we were only able
to achieve up to 90.32%.

We compared these results with leave oneout cross-validation (LOOCV) to measure the
methods ability to generalize. For each sample left out, a complete series of 100 GP runs
was performed to classify the sample, with a fixed number of 100 generations per single run.
The results are also shown in Table 5.

Altogether, 2P is the best unsupervised method on both datasets. On the ALL/AML
set 2P is even better than most of the supervised methods. Only S2N is slightly better on



Table 6. Example classifiers for the four classes of the SRBCT dataset generated with DISCIPU-
LUS. GENE i stands for the expression level of gene i. Hit-rate is 100% on the evaluation set, i.e.
this is a perfect solution. Gene numbers correspond to the order in the original dataset.

IF((GENE 123 * GENE 165) > 0.5)

THEN ’Burkitt lymphoma’

IF((((GENE 1319 / GENE 2050) + 0.54216) * 0.22590) > 0.5)

THEN ’Ewing family of tumors’

IF((GENE 742 * GENE 255 * 0.34336) > 0.5)

THEN ’Neuroblastoma’

IF((GENE 147 * GENE 187 * GENE 2047) > 0.5)

THEN ’Rhabdomyosarcoma’

average for all 30 best classifiers. 2P failed to detect 6 samples in LOOCV with a majority
of classifiers. Here the supervised methods were clearly better (1 or 2 failures). Surprisingly,
the very simple methods IR and SD also reached a hit-rate of almost 80% in some cases.
But many genes with high 2P or S2N scores also have a large range and standard devia-
tion, so that there is a large intersection in the prediction sets selected by these different
methods. Among the supervised methods MD seems to be relatively good in comparison
to the widely used S2N method. Through division by standard-deviations, S2N produces
a kind of normalized MD. It seems that GP achieves only a slight advantage through this
normalization. FC is similar to MD and S2N and produced similar results here. The CC
approach is based upon an idea different from MD, S2N and FC. Overall it seems that it
offers no real advantage in comparison to the other methods. An exception is the result from
LOOCV on the Colon dataset, where CC provided the best results.

3.2 Multiple class data

After examination of the binary datasets, we analyzed multiple class cancer sets. Here,
our main goal was to find good classifiers, with accurate predictions for as many samples
as possible. We had to choose one selector method over the others, due to the increased
computational effort with multiple classes.

On binary datasets 2P proved to be the best unsupervised selection method. But for
multiple classes this selector produced only poor results (not shown) and therefore not
suitable for multiclass prediction. The supervised methods MD, S2N, and FC all produced
similar results on the binary sets, with S2N slightly better than the others. CC performed
suboptimal in most cases except LOOCV on Colon data. So here we only used the S2N
criterion for the more complex multiclass analysis. For training we ran GP 300 times for
each class in a dataset (OVR), with a run being terminated after 300 generations of fitness
stagnation.

We start with the multiclass analysis of the SRBCT data. After training classification
rates of 100% for the evaluation samples were achieved by using the post-processing algo-
rithm described in section 2.3. In particular, the five samples not belonging to any of the four
classes were correctly classified as unknown. We also trained classifiers using a prediction
set described in [14]. In that study a perfect classifier with only 10 genes is described. It
was generated by a special variant of GP. Our classifier trained on the same 10 genes, also
achieved a perfect hit-rate of 100%.



Table 7. Comparison of best results on the different evaluation datasets used in this contribution.
Second column: Best results (hit rate of best single individual on the evaluation dataset) using
the GENEACTIVATOR/DISCIPULUS combination. Third and fourth columns: Results of other
studies (cited). See text for further discussion.

Data Best results here Other EA results Other methods

COLON 90.32% 100.00% [13] 90.32% [18]
90.00% [30] 87.09% [1]

ALL/AML 97.06% 100.00% [13] 97.06% [2]
97.06% [28] 97.06% [12]
97.06% [30] 97.06% [27]

94.11% [40]
94.11% [18]
85.29% [20]

SRBCT 100.00% 100.00% [14] 100.00% [27]
100.00% [39]
100.00% [40]

GCM 62.96% 84.30% [13] 80.00% [3]
78.00% [36]
76.60% [39]

Using the aforementioned post-processing algorithm for the GCM set hit-rates of only
46.29% were achieved on the evaluation set. By increasing the number of genes selected for
each of the 14 OVR optimizations from 20 to 50 the algorithm obtained a hit-rate of 62.96%.
In [36] improved hit-rates were reached with larger sets of genes. Prediction sets with 20
genes only might be too small for the GCM problem.

The same dataset has been analyzed by [13]. They enlarged their training set by incor-
porating the correct hit-rate on the evaluation set (in their case as a further Pareto goal).
Applying the evaluation set in DISCIPULUS we could also achieve a classification rate of
100.00%, again with the post-processing algorithm and 50 genes in the prediction set. It
must be emphasized that the evaluation set in our case was not used for training during the
runs, but only for evaluating classifiers after training in order to sort through them on the
basis of their generalization performance.

The same method was tested on the SRBCT set to find small classifiers which could
classify all samples. Overall we found a large number of perfect classifiers for this dataset.
Table 6 shows an example of a classifier predicting each class correctly for all samples in the
training and in the evaluation set.

4 Discussion

Table 7 shows a comparison of our results with those described in the literature. Prediction
set sizes used in these studies vary considerably. A fair comparison is therefore difficult to
achieve. Our results on the two binary sets are as strong as those achieved by others, except
the results by [13]. Their results, however, were only obtained by adding the evaluation set
into training the classifiers. Generally, the results on the Colon dataset are weaker than
those on the ALL/AML set. It seems that there is more noise in the Colon data than in
the ALL/AML data. In multi-class classification we reached a hit-rate of 100.00% on the
SRBCT dataset, again as strong as other studies. On the more complex 14-class GCM



dataset recognition rates were relatively weak compared to other studies, suggesting further
research is necessary.

Altogether it has been confirmed that GP is a suitable method for gene expression data
analysis. Performance strongly depends on the gene selection method and the quality of
datasets. It should be possible to advance the accuracy of our method further, for instance
by a pre-analysis of the data to choose a suitable gene selection method. If the signal-to-
noise ratio is poor, the unsupervised 2P method should be used in two-class problems. It is
not clear why the genes found by [14] are so beneficial to generate a classifier. Only about
half of them have a good signal-to-noise ratio. So the search for better selection procedures
is important, particularly for multivariate procedures ranking combinations of genes. Gene
expression values are usually not independent ¿from each other, due to the dependencies in
metabolic pathways. Hence, for classification purposes one gene alone might be useless, but
in combination with other genes it might be significant for a reliable diagnosis.

A number of features to improve the power of DISCIPULUS would be desirable:

– Better support for non-binary problems, perhaps with automatic OVR or the automatic
use of All Pairs (AP).1

– Implementation of LOOCV.
– Batch analysis from command line for high-throughput analysis.

With the continuous advance in data collection and data management methods used
with gene expression data [9, 6] we are going to see more demand for potent analysis tools
in the future. We hope to be able to conduct broader studies in the future that will confirm
the validity of our approach.
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H.-G. Beyer, editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2000), 551–557, San Francisco, 2000. Morgan Kaufmann.

20. T.-R. Golub, D.-K. Slonim, P. Tamayo, and C. Huard. Molecular classification of cancer: Class
discovery and class prediction by gene expression monitoring. Science, 286: 531–537, 1999.

21. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using
support vector machines. Machine Learning, 46: 389–422, 2002.

22. J.-H. Hong and S.-B. Cho. Lymphoma cancer classification using genetic programming with
SNR features. In M. Keijzer et al., editors, Proc. Genetic Programming 7th European Confer-
ence (EuroGP 2004), 78–88, Springer, Berlin, 2004.

23. K.-B. Hwang, D.-Y. Cho, S.-W. Park, S.-D. Kim, and B.-T. Zhang. Applying machine learning
techniques to analysis of gene expression data: Cancer diagnosis. In S. M. Lin and K. F.
Johnson, editors, Proceedings of CAMDA ’00, 69–81, 2002. Kluwer Academic, Norwell, MA.



24. J. Khan, J.-S. Wei, M. Ringer, L.-H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab,
C.-R. Antonescu, C. Peterson, and P.-S. Meltzer. Classification and diagnostic prediction of
cancers using gene expression profiling and artificial neutral networks. Nature Medicine, 7:
673–679, 2001.

25. J. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
26. W.-B. Langdon and B.-F. Buxton. Genetic programming for mining DNA chip data from cancer

patients. Genetic Programming and Evolvable Machines, 5: 1–7, 2004.
27. Y. Lee and C.-K. Lee. Classification of multiple cancer types by multicategory support vector

machines using gene expression data. Bioinformatics, 19: 1132–1139, 2003.
28. L. Li, T.-A. Darden, C.-R. Weinberg, A.-J. Levine, and L.-G. Pedersen. Gene assessment and

sample classification for gene expression data using a genetic algorithm/k−nearest neighbor
method. Combinatorial Chemistry & High Throughput Screening, 4: 727–739, 2001.

29. L. Li, W. Jiang, X. Li, K.-K. Moser, Z. Guo, L. Du, Q. Wang, E.-J. Topol, Q. Wang, and
S. Rao. A robust hybrid between genetic algorithm and support vector machine for extracting
an optimal feature gene subset. Genomics, 85: 16–23, 2005.

30. J. Liu and H. Iba. Selecting informative genes using a multiobjective evolutionary algorithm.
CEC ’02. Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI, Vol
1: 297 – 302, IEEE Press, New York, 2002.

31. J.-J. Liu, G. Cutler, W. Li, Z. Pan, S. Peng, T. Hoey, L. Chen, and X.-B. Ling. Multiclass
cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics, 21:
2691–2697, 2005.

32. D. Michie, D.-J. Spiegelhalter, and C.-C. Taylor. Machine learning, neural and statistical clas-
sification. Prentice Hall, 1994.

33. J.-H. Moore. Cross validation consistency for the assessment of genetic programming results
in microarray studies. In S. Cagnoni et al., editors, Applications of Evolutionary Computing:
EvoWorkshops 2003, 99–106, Springer, Berlin, 2003.

34. J.-H. Moore, J.-S. Parker, and L.-W. Hahn. Symbolic discriminant analysis for mining gene
expression patterns. In L. De Raedt and P. Flach, editors, Lecture Notes in Artificial Intelligence
2167, 372–381, Springer, Berlin, 2001.

35. J.-H. Moore, J.-S. Parker, N.-J. Olsen, and T.-M. Aune. Symbolic discriminant analysis of
microarray data in autoimmune disease. Genetic Epidemiology, 23: 57–69, 2002.

36. S. Ramaswamy, P. Tamayo, R. Rifkin, and S. Mukherjee. Multiclass cancer diagnosis using
tumor gene expression signatures. PNAS, 26: 15149–15154, 2001.

37. D.-M. Reif, B.-C. White, N. Olsen, T. Aune, and J.-H. Moore. Complex function sets improve
symbolic discriminant analysis of microarray data. In E Cantú-Paz et al., editors, Proc. Genetic
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