
C
om

pu
te

r
Sc

ien
ce TECHNICAL REPORT #2010-01

On E-contract Activity Commitments
by

K. Vidyasankar

In conjunction with:
P. Radha Krishna

SET Labs, Infosys Technologies Limited
Kamalakar Karlapalem

International Institute of Information Technology

Department of Computer Science
Memorial University of Newfoundland

St. John’s, NL, Canada A1B 3X5

May 2010

 1

On E-contract Activity Commitments

K. Vidyasankar & 1, P. Radha Krishna* and Kamalakar Karlapalem+

&Department of Computer Science, Memorial University, St. John’s, Canada, A1B 3X5.
vidya@mun.ca

*SET Labs, Infosys Technologies Limited, Hyderabad, India.
Radhakrishna_p@infosys.com

+International Institute of Information Technology, Hyderabad, India.
kamal@iiit.ac.in

Abstract

An e-contract is a contract modeled, specified, executed, controlled and monitored by
a software system. A contract is a legal agreement involving parties, activities, clauses
and payments. The activities are to be executed by the parties satisfying the clauses, with
the associated terms of payment. The activities in a contract are generally complex and
interdependent. They may be executed by different parties autonomously and in a loosely
coupled fashion. They may be compensated and/or re-executed at different times relative
to the execution of other activities. Both the initial specification of the activities and the
later verification of their executions with respect to compliance to the clauses are tedious
and complicated. We believe that an e-contract should reflect both the specification and
the execution aspects of the activities at the same time, where the former is about the
composition logic and the latter is about the transactional properties. The goals of an e-
contract include precise specification of the activities of the contract, mapping them to
deployable workflows, and providing transactional support for their executions. Towards
facilitating this, we present a multi-level composition model for activities in e-contracts.
Our model allows for the specification of a number of transactional properties, like
atomicity and commitment, for activities at all levels of the composition. It enables the
study of the interdependencies between the executions of e-contract activities. This will
help in monitoring behavioral conditions stated in an e-contract during its execution. We
show also that the transactional properties facilitate computing the cost of execution of
the activities and coordinating payment.

1. Introduction
An electronic contract, or e-contract in short, is a contract modeled, specified,

executed, controlled and monitored by a software system. A contract is a legal agreement
involving parties, activities, clauses and payments. The activities are to be executed by
the parties satisfying the clauses, with the associated terms of payment.

Consider, for example, a contract for building a house. The parties of this contract
include a customer, a builder, a bank and an insurance company. The contract has several
parts: (a) The builder will construct the house according to the specifications of the
customer. Some of the activities such as carpentry, plumbing and electrical work may be
sub-contracted; (b) The customer will get a loan for the construction from the bank. He

1 This research is supported in part by the Natural Sciences and Engineering Research Council of Canada Discovery

Grant 3182.

 2

will apply for a mortgage, and work out details of payment to the builder, directly by the
bank, after inspection of the work at multiple intervals; and (c) The house shall be insured
comprehensively for the market value covering fire, flood, etc. in the joint names of the
bank and the customer. The activities of the customer and the builder include the
following.
- Customer: (i) submitting the loan application, (ii) setting up coordination between bank

and builder, (iii) receiving payments and (iv) arranging monthly repayments.
- Builder: (i) scheduling different works involved in the construction, (ii) procuring raw

material, (iii) building the house as per the agreement, (iv) giving part of the work to
sub-contracts, if any, (v) receiving the payments, (vi) making payments to its staff and
sub-contract parties, if any, and (vii) handing over the constructed house to the
customer.

An example of a clause relating to payments can be, in verbatim, as follows.
 “If the bank is of the opinion that the progress of work of construction of the said house
is unsatisfactory, the bank shall be at liberty to decline to make payment of any not-yet-
disbursed installment of the said loan or at its discretion postpone the payment thereof
until such time the bank is satisfied that the cause or causes for its dissatisfaction with the
progress and quality of work has or have been removed.”.

Contracts are complex in nature. Both the initial specification of the requirements and
the later verification of the execution with respect to compliance to the clauses are very
tedious and complicated. This is due, partly, to the complexity of the activities. Typically,
the activities are interdependent with other activities and clauses. They may be executed
by different parties autonomously, in a loosely coupled fashion. They are long-lasting.
Though the desirable outcomes of their executions are stipulated in the contract
specification, their executions may yield unexpected results. This might result in re-
design and even re-specification of the contract. We assert that a key to handle the
complexity in executions of contract activities is adherence to transactional properties.

In database applications, atomicity is strived for in a (simple) transaction execution.
That is, a transaction is executed either completely or (effectively) not at all. Given a non-
null partial execution, the former is obtained by forward-recovery and the latter by
backward-recovery. On successful completion, the transaction is committed. In multi-
database and other advanced database applications, transactions may be committed
(locally) and then rolled back logically, by executing compensating transactions. This
property is called compensatability. The property of repeatedly executing a transaction
until successful completion is also considered; this is called retriability.

In e-contract activities also, both compensatability and retriability properties are
encountered for the activities, and in fact, in more sophisticated ways. For example,

(i) Both complete and partial executions may be compensated,
(ii) Both successful and unsuccessful executions may be compensated,

(iii) Even “committed” executions may be retried,
(iv) Retrying may mean, in addition to re-execution, “adjusting” the previous execution,

and
(v) Activities may be compensated and/or retried at different times, relative to the

execution of other activities.

E-contract activities differ from database transactions in many ways:

 3

(i) Different successful executions are possible for an activity;
(ii) Unsuccessful executions may be compensated or re-executed to get different

results;
(iii) Whether an execution is successful or not may not be known until after several

subsequent activities are executed, and so it may be compensated and/or re-
executed at different times relative to the execution of other activities;

(iv) Compensation or re-execution of an activity may require compensation or re-
execution of several other activities; etc.

In this paper, we propose a multi-level composition model for activities in e-contract.
We start with basic activities and construct composite activities hierarchically. In the first
level, a composite activity consists of basic activities; in the next level, a composite
activity consists of basic and/or composite activities of level one; etc. The highest level
activity will correspond to the “single” activity for which the contract is made. We call
this the contract-activity. (We note that there could be multiple contracts for a single
activity. For example, for building a house, there could be separate contracts between (i)
customer and the builder, (ii) customer and the bank, (iii) customer, bank and insurance
company, etc. These contracts will be related. We consider this set of contracts as a part
of a single high level contract whose contract-activity is building the house.) Then, our
contention is that the execution of each activity, at every level, should satisfy
transactional properties.

Payments are made to parties. They may be constrained by clauses. Unlike in
traditional information systems, executions of activities in e-contracts are subjected to
risks and losses (in case of non-performance), trust issues (among parties with respect to
satisfactory execution), ambiguity in specifications (in clauses), different types of failures
(especially of non-electronic ones) and potential variations in outcomes. All these
parameters influence the cost of an activity in the e-contract. Most importantly, payments
are meant for, and so are closely related to, the execution of activities in the contract. We
show that our multi-level composition model helps in computing the costs and for
monitoring payments.

Every activity in the contract must be closed at some time. On closure, no execution
related to that activity would take place. The closure could take place on a complete or
incomplete execution, and on a successful or failed execution. On closure of the contract-
activity, the e-contract itself can be closed. The e-contract closure is mostly a human
decision. It may involve auditing, handing over documents, releasing assets, dispute
resolution (if any), settling payments (including post-deliverable payments), etc.
However, in this work, we consider commitment of e-contract as e-contract closure. We
use the term e-contract commitment logic to refer to the entire logic behind the
commitment of the various activities of the e-contract, and the closure of the activities
and the e-contract.

In e-contracts, interaction occurs between parties which are autonomous and work
together using loosely-coupled services. A contract consists of numerous activities that
are to be carried out by parties and contract clauses that address a specific concern in the
business interaction. Since inter-organizational work elements are handled through
contracts and most of the contracts are complex and voluminous, manual verification is
both expensive and error prone. This necessitates a well-defined commitment framework
for correctness and successful execution of e-contracts [3, 12].

 4

1.1. Architecture
Transactional semantics, workflow semantics, clauses and payment components of e-

contract need to be considered for addressing e-contract commitments. Workflow
semantics deals with the composition logic, namely, the semantics of the executions of
the individual activities that constitute the workflow. Transactional semantics deals with
the commitment logic, about atomicity, forward- and backward-recovery and
commitment of the executions, and closure of the activities and the e-contract. Both
clauses and payments influence, and are influenced by, both the workflow and transaction
semantics.

Figure 1 shows a high-level view of activity commitment system. The figure has two
components: specification engine and execution engine. E-contract document is the basic
input to the entire system. The specification engine extracts activities and clauses
specifications. These specifications are useful to generate workflow specifications and
multi-level composition model. The e-contract activity characteristics described above
give rise to sophisticated interdependencies between executions of different activities.
These dependencies deeply impact both the recovery and commitment aspects. Activity
and clause specifications are also useful to derive the dependencies between activities.
Using the audit trials provided by the log manager, the components of the execution
engine ensure the atomicity of the executions of the e-contract activities.

In this paper, we focus on execution engine, particularly on the aspects required in
developing commit design and dependencies and recovery coordinator components.

Execution Engine

 Specification Engine

E-contract Document

 Activity/Clause Specification

Workflow Specification Composition Model

Commitment Engine Workflow Engine

Figure 1. E-Contract Activity Commitment System - High level view

 Database Log Manager

Dependencies
Specification

Dependencies & Recovery Coordinator

 5

1.2. Contributions and Organization of the Paper
In this paper, we propose a multi-level composition model for the (composite)

activities of an e-contract. Transactional properties have been defined to suit the real
world, non-electronic, activities. The salient points are the following.

i. Transactional properties are defined for executions of activities rather than
activities themselves. This accounts for the fact that different executions of the
same activity might have different characteristics.

ii. Atomicity is defined for executions of composite activities of any level in spite of
the executions of even some basic activities being non-atomic. This helps in
dealing with backward- and forward-recoveries at each level independent of its
descendent levels.

iii. The scope of retriability is extended from executing the same activity again, or
executing some other substitute activity, to adjustments to the original execution.

iv. Two levels of commitment, weak and strong, are defined. On weak commitment,
the execution becomes non-compensatable, and on strong commitment it becomes
non-retriable. Weak commitment is the commitment property of the traditional
database operations and the pivotal property of multi-database operations. The
strong commitment property definition is new.

Both (a) defining transactional properties for activities of a contract and (b)

influencing e-contract design with transactional properties are novel and have not been
done before.

We use the composition model to study the interdependencies among the executions
of the activities, and also the dependencies between the executions and the payments for
the activities. We consider (i) the payment amount for the execution of an activity, (ii) the
time of payment relative to the execution and (iii) tracking the payment against the
execution of the activity.

The rest of the paper is organized as follows. Some related work is described in
Section 2. We present the basic concepts related to our model in Section 3 and the model
in Section 4. Payment issues are considered in Section 5. Section 6 concludes the paper.

2. Related Work
Considerable work has been carried out on the development of e-contract framework

and architectures, commitment and monitoring of e-contracts. We cite some of them in
the following.

Chiu et al. [6] presented a meta-model for e-contracts and templates, an architecture
and a methodology for developing e-contract enforcement rules. The CrossFlow project
[11] introduces dynamic contracting and configuration for service enactment and defines
inter-organizational business process among the parties. SweetDeal system [13] allows
software agents to create, evaluate, negotiate and execute e-contracts with substantial
automation and modularity. E-ADOME [15] and CrossFlow [16] systems describe the
workflow interfaces as activities and transitions in e-contracts. In the same way, Chiu et
al. [5] develop a framework for workflow view based e-contracts for e-services. Grefen
and Vonk [10] describe the relationship between transaction management systems and
workflows for transactional business process support. Wang et al [27] describe a Business

 6

Transaction Framework based on Abstract Transactional Constructs, which provides a
specification language for identifying and interpreting clauses in e-contracts.

Krishna et al. [17] consider activity-party-clauses and activity-commit diagrams for
modeling and monitoring e-contracts. These constructs are used to express the execution
order and execution status of the contract that is being considered. Rouached et al. [19]
present an event-based framework associated with a semantic definition of the
commitments expressed in the event calculus to model and monitor multi-party contracts.
Jain et al. [14] present a flexible composition of commitments, known as
metacommitments. These commitments are mainly associated with the role of a party and
ensuring whether a particular activity is committed or not. They do not refer the
commitments with respect to the execution states of an e-contract activity.

Xu [28] proposes a pro-active e-contract monitoring system that is based on contract
constraints and guards of the contract constraints to monitor contract violations. This
paper represents constraints using propositional temporal logic in order to provide formal
semantics for contract computation at the contract fulfillment stage. However, the
formalism in this paper does not provide the execution level semantics of an e-contract
commitment. Farrell et al. [9] present automated performance monitoring of e-contracts,
in terms of tracking contract states by expounding an XML formalization of the event
calculus and ecXML. A rule-based approach is presented in [13] to deal with exceptions
raised during e-contract execution.

Transaction concepts, as the ACID (Atomicity, Consistency, Isolation and Durability)
properties, were first proposed for database applications. In early applications, the
database system was centralized, the execution time was relatively short, and the number
of concurrent transactions was relatively small. For distributed database systems and
long-running transactions, several variations of the basic transaction model were
proposed. Some examples are chained transactions, saga, nested transactions and ACTA
framework [7, 8]. Later proposals include [4] for long-running transactions and [1] for
workflows. The Activity-Transaction Model (ATM) in [2] allows long-running
transactions and provides recovery mecahnisms for transaction workflows that consist of
transaction hierarchies. Papazoglou [18] describes a taxonomy of e-business transaction
features and presents a business transaction model that relaxes isolation and atomicity
requirements of ACID transactions in a loosely coupled environment consisting of
autonomous trading partners. This paper also describes backward- and forward-recovery
for long-running business transactions.

 Compensatability and retriability properties were first identified in the context of
atomicity of multi-database applications (for instance, [21]). To achieve atomicity (of a
global transaction) in autonomous execution (of the subtransactions), a multi-database
transaction is modeled to consist of a sequence of compensatable transactions, followed
possibly by a pivotal (that is, non-compensatable) transaction and a sequence of retriable
transactions. In particular, each multi-database transaction can have at most one pivot.
Schuldt et al. [20] extended this idea to transactional processes by allowing multiple
pivots. Clearly, with multiple pivots, atomic execution may not be possible (when some
pivots are executed but others cannot be executed). They defined a property, called
guaranteed termination, which formalized “graceful” termination of the transaction after
some pivots were executed. In addition, the pivots in a guaranteed termination were
executed in sequence. Further extension was done in [22, 23], in the context of

 7

composition of Web Services. In this work, (i) the guaranteed termination concept was
extended to atomicity (of global transaction, or composite activity or service), (ii)
forward- and backward-recovery procedures for achieving atomicity were given, and (iii)
non-sequential, tree-like, execution of the pivots was accommodated. Then the
transactional properties (atomicity, compensatability, retriability and pivot) were
extended to hierarchically composed activities/services. It was shown that the
transactional properties can be considered at each level independently of the properties of
the other level activities. The proposal to address activity commitments in e-contracts in
this work is along the lines of [24, 25, 26] but tailored and extended to e-contract
environment.

3. Basic Concepts
In this section, we present the concepts and notations relevant for transactional

properties in the context of e-contracts, and in the next section we present our model.

Basic Activities

We consider certain activities as basic in our model. Typically, these are the activities
which cannot be decomposed into smaller activities, or those that we want to consider in
entirety, and not in terms of its constituent activities.

In e-contract environment, some basic activities may be executed ‘electronically’ (for
example, processing a payment), but most others will be non-electronic (for example,
painting a door). We desire that all basic activities are executed atomically, that is, it is
either not (effectively) executed at all or executed completely. However, incomplete
executions are unavoidable and we consider them in our model.

Constraints

Each activity is executed under some constraints. Examples of constraints are (i) who
can execute the activity, (ii) when it can be executed, (iii) whether it can be executed
within a specified time period, (iv) cost of execution, (v) what properties need to be
satisfied for an execution to be acceptable, and (vi) compensatability or other
transactional properties. The first four constraints relate to workflow semantics. The last
two relate to transactional semantics.

A complete execution of an activity that satisfies all the constraints specified for the
execution of that activity at the time of its execution is called a successful termination,
abbreviated s-termination, of that activity. The constraints themselves are specified in
terms of an s-termination predicate, or simply, st-predicate. A complete execution which
does not satisfy the st-predicate is called a failed termination, abbreviated f-termination.
The s- and f-termination distinction is applied to incomplete executions also, depending
on whether the st-predicate is satisfied thus far.

Example 1: Consider the activity of painting a wall. The execution is incomplete while the wall is
being painted, and complete once the painting is finished. If the paint job is good at the end
(respectively, in the middle), the execution is a complete (respectively, incomplete) s-termination.

 8

If the paint job is not satisfactory, we get a complete or incomplete f-termination. The st-predicate
specifying the goodness of the job could be: (i) one undercoat and one other coat of paint and (ii)
no smudges in the ceiling or adjacent walls.

For many activities, especially non-electronic ones, some acceptability criteria may
be highly subjective and may depend on the application environment. For example,
consider the activity of building a wall. Quantitative aspects such as the dimensions of
the wall, its location, etc. can be expressed easily. Smoothness of the finished surface and
extent of the roundedness of the corners will be application dependent. The requirements
for a wall in a children’s hospital will be different from those for one in an army barrack.
We propose that a predicate, termed property-predicate, be defined for each of the
requirements and the acceptability, that is the st-predicate, be stated in terms of satisfying
a Boolean expression of the property-predicates. Determining whether a property-
predicate is satisfied or not in an execution will be left to the application semantics. Thus,
the st-predicate for the construction of a wall could be (d AND s AND r) where d is the
dimension predicate stating whether the dimensions of the wall are according to
specifications, s is the smoothness predicate and r is the roundedness (of the corners)
predicate. Then, an execution which does not satisfy one or more of these predicates will
be an f-termination. Clearly, several different f-terminations are possible. As another
example, the st-predicate for finishing a wall could be ((u AND o) OR (u AND w)) where
u refers to an undercoat of painting, o is an overcoat with smooth finish and w is wall-
papering. Here, two s-terminations are possible, one yielding a painted surface and the
other with wall paper.

The constraints may change, that is, the st-predicate of an activity may change, as the
execution of the contract proceeds. In the above example of building a wall, the required
thickness of the wall may change from 6 inches to 8 inches, thus changing the dimension
predicate. Similarly, two coats of paint may be required in addition to undercoat. Such
changes may invalidate a previous s-termination. When this happens, the execution needs
to be adjusted. We note also that, with changes in the st-predicate, an earlier f-terminated
execution may become an s-termination. It follows that we may not know whether a
termination is an s-termination or an f-termination until some time later.

Compensatibility

One of the ways an execution can be adjusted is by compensation, namely, nullifying
the effects of the execution. Absolute compensation may not be possible in several
situations. In some cases, the effects of the original execution may be ignored or
penalized and the execution itself considered as compensated. It is possible that an
execution can be compensated within a certain time, but not afterwards. The time could
be “real” time (for example, flight reservations can be cancelled without penalty within
24 hours of booking, and vinyl flooring glued to the floor can be removed before the glue
sets) or specified relative to the execution of some subsequent activities (for example,
flight bookings can be cancelled until paid for, and a (stolen) cheque can be cancelled
before it is cashed). Inability to execute a compensating activity within a prescribed time
limit may also make the original execution non-compensatable.

Note that we do not attribute compensatability property to an activity, but only to an
execution of that activity. For the same activity, some executions may be compensatable,

 9

whereas others may not be. For example, when we book flight tickets we may find that
some tickets are non-refundable, some are fully refundable, and some others partially
refundable. Purchasing a fully refundable ticket may be considered to be a compensatable
execution, whereas purchasing any other type of ticket could be non-compensatable.
Thus, compensatability of the execution (purchasing a flight ticket) is known only during
execution, and not at the specification time of the activity. We look at compensation as a
logical roll back of the original execution. Then, compensation may also be done by
executing some other, compensating, activity. The compensating activity could be
executed at different levels, in our multi-level model.

Retriability

Another way of adjusting an execution is by retrying. By retriability, we mean the
ability to get a complete execution satisfying the (possibly new) st-predicate. It is
possible that the original execution is compensated fully and new execution carried out,
or the original execution is complemented, perhaps after a partial compensation, with
some additional execution, for instance, the second coat of painting in Example 2.
Another example is, a day after pouring concrete for the foundation of a house, the
thickness of the concrete may be found to be insufficient, and additional concrete poured
for the required thickness.

Retriability may also be time-dependent. It may also depend on the properties of
execution of other preceding, succeeding or parallel activities. Again, in general, some
executions of an activity may be retriable, and some others may not be retriable.

We note that retriability property is orthogonal to compensatability. That is, an
execution may or may not be retriable, and, independently, may or may not be
compensatable.

Execution States

We consider an execution of an activity with a specified st-predicate. On a
termination, if we are not satisfied with the outcome, that is, the st-predicate of that
activity is not satisfied, then we may re-execute. In general, several re-executions and
hence terminations are possible. We assume the following progression of the states of the
(complete or incomplete) terminations.

1. The termination is both compensatable and re-executable.
2. At some stage, the termination becomes non-compensatable, but is still re-

executable. Then, perhaps after a few more re-executions, we get a termination
which is either

a. non-re-executable to get a complete s-termination, and we take this as
an f-termination, or

b. re-executable to get eventually a complete s-termination, and we
identify this state as non-compensatable but retriable.

3. Continuing re-executions in state 2.b, at some stage, we get a complete s-
termination which is non-compensatable and non-re-executable.

It is also possible that an (un-compensated) execution remains in state 1 and never goes
to state 2, and similarly an execution is in state 2.b, but never goes to state 3

 10

We say that an execution in state 2.b is weakly committed, that is, when it is or has
become non-compensatable, but is retriable. An execution in state 3 is strongly
committed. We note that both weak and strong commitments can be forced upon
externally also. That is, the execution can be deemed as (weakly or strongly) committed,
for reasons outside of that execution. An example is payment to a sub-contractor for
execution of an activity, and the non-obligation and unwillingness of the sub-contractor
to compensate (in case of weak commitment) or retry (in case of strong commitment) the
execution after receiving the payment. We say also that an activity is weakly (strongly)
committed when an execution of that activity is weakly (strongly) committed.

We allow compensatability and retriability properties to be applicable to incomplete
executions also. We assume the first two of the above state transition sequences for
partial executions. That is, a partial execution is both compensatable and retriable in the
beginning, and may become non-compensatable at some stage. Then, if it is retriable, that
is, a complete s-termination is guaranteed, then the execution can be weakly committed.
Note that we are simply allowing the transition from uncommitted to weakly committed
state to occur even before the execution of the activity is complete. We do not allow
transition from weakly committed to strongly committed state until (or some time after)
the execution is completed.

Figure 2 depicts the execution stages (boxes) of an activity, and possible transitions

(arrows) between them. Some notable points are the following.
- Re-execution may possibly occur after a partial or full backward-recovery.
- As stated earlier, retry denotes re-execution that is guaranteed to yield an s-

termination.
- A full backward-recovery yields the null termination. If re-execution of the activity is

intended after the null termination, we take the backward-recovery as part of retry;
otherwise, it is taken as compensation.

Complete or
incomplete

f-termination

Execution stopped

Execution in progress

Start

Compensate

Closed null
termination

Closed non-null
f-termination

Incomplete
weakly committed

s-termination

Complete weakly
Committed s-termination

Closed strongly
committed s-termination

Figure 2. Execution stages of an activity

Retry Re-execute

Complete or
incomplete

s-termination

 11

- A complete s-termination may become an f-termination, with a change in st-predicate.
If this happens before weak commitment, the transitions of an f-termination are
followed. Otherwise, if the execution is already weakly committed, then a retry that
guarantees s-termination is assured.

- If the compensation succeeds we get the null termination. Otherwise, we get a non-null
f-termination.

The “final” state of execution of a basic activity is closure. Figure 2 shows three possible
states of closure: (i) null; (ii) non-null (incomplete or complete) f-termination; and (iii)
(complete) s-termination, which also corresponds to strong commitment of the execution.

Figure 2 is applicable to composite activities also. Complete and incomplete, and s-
and f-terminations can be defined for composite activities, analogously. This is done in
the model. We explain this later.

We illustrate the different categories with the following example.
Example 2: Let U be a composite activity consisting of (i) writing and printing a letter, (ii)
preparing an envelope, and (iii) inserting the letter in the envelope and sealing it. Call the activity
(ii) as C. Then C is composed of (a1) printing the From and To addresses on the envelope,
perhaps with a printer and (a2) affixing a stamp on the envelope. Consider an execution of U. The
following possibilities arise.
- (i) is done but (ii) fails possibly because of printing a wrong address. Now we may decide not to

bother preparing a new envelope and sending the letter. This is an incomplete f-termination.
- (i) and (ii) are done. (iii) is not done (yet). This is an incomplete s-termination.
- All the three activities are done, but we realize afterwards that the address is wrong, that is, (ii)

is not executed correctly. This is a complete f-termination.
- All activities have been done correctly. This is a complete s-termination.

Different terminations in an execution of an activity are given in Figure 3. In the case
m > 1, each Termination-i, for i between 1 and m-1, is both compensatable and re-
executable. Termination-m either leads to a (compensated or non-compensated) f-
termination or becomes a weakly committed wc-termination-1. In the latter case, we
eventually get a strongly committed sc-termination. Note that the case where both m and
n are 1 refers to the first termination itself being successful, and weakly and strongly
committed.

4. Composition Model for Activities
We now describe our composition model for the activities in an e-contract. We start

with a specification of one level, the "bottom" level, in the first two sub-sections, and
give multi-level model in Section 4.3.

4.1. Path Model
We start with a simple model, called the path model, to illustrate the various key

aspects. We will extend it to a general model in the next sub-section. Our description is in
four parts – composition, execution, transactional properties, and implementation details.
We use bold font to denote compositions, and italics to denote their executions, that is,
the composite activities.

 12

Strong Commit

Retrys

Figure 3. Different terminations

Weak commitTry to Compensate

 Re-executions

 Start execution

Begin

Termination-1

Termination-m, m ≥ 1

wc-termination-1 f-termination

wc-termination-n, n ≥ 1

sc-termination

A. Composition
- Composition C is a rooted tree. It is for an activity of a higher level composition U.
- An st-predicate is associated with C. This will prescribe the s-terminations of C (We

define s-terminations of a composition later).
- Nodes in the tree correspond to basic activities. They are denoted as a1, a2, etc.
- With each node in the tree, an st-predicate and a children execution predicate,

abbreviated ce-predicate, are associated.
- The st-predicate specifies s-terminations of that activity. The ce-predicate specifies, for

each s-termination of that node, a set of children from which exactly one child has to be
executed, the child being chosen according to a given partial order of preferences. The
ce-predicates for the leaf nodes of the composition are null.

- We assume that the st-predicate and ce-predicate of each of the nodes in C are derived
from the st-predicate of C.

Example 3: Figure 4 (a) shows a composition where Ci’s are construction activities for a product
and Ij’s are Inspection activities. After the first two stages, C0 and C1, of the construction, the
inspection I1 is carried out. Depending on the result, say quality of the product after C1, C2 is
carried out if possible, and C2′ or C2″ otherwise, in that order. This will be the ce-predicate at I1.
Only the inspection I2 after C2 is shown. The st-predicate for each Ci will be the guidelines to be
followed for that construction. The st-predicate for each Ii will be the acceptable results of the
things to be checked in that inspection.

B. Execution
- An execution of activity ai is denoted ai.
- A successful execution E of C yields a composite activity C. The execution consists of

s-terminations of activities in the path from the root to a leaf (and f-terminations of
some other activities). The corresponding nodes form a sub-tree of C, called
execution-tree. If all the activities in this path have been executed completely, then E
is a complete execution of C. (The example, shown in Figure 4(b), has executions of

 13

C0, C1, I1 and C2′ with s-terminations and C1 and I2 with f-terminations.) Otherwise,
that is, if only the activities from the root to some non-leaf node have been executed
(for example, only C0, C1 and I1) and/or the executions of some activities are not
complete (C2′ is still being executed), then it is an incomplete execution of C. If E is a
complete (incomplete) execution and each activity in E has s-terminated, then E is a
complete (incomplete) s-termination of C. A complete s-termination is usually called
simply as an s-termination of C. An f-termination of C is either a complete or
incomplete execution in which executions of some activities have f-terminated.

- In each s-termination C, at each non-leaf node ai, the selection of the s-terminated
child of ai satisfies the ce-predicate currently specified for ai in C.

- Both the st-predicate and the ce-predicate at each node ai may be changing as the
execution of subsequent activities of C proceeds.

- Partial execution of C will be represented by a path from the root a1 to some node ai in
the tree, and will be denoted (a1, ..., ai), and also as C[1,i]. Here, the part that is yet to be
executed to get a complete termination of C is the subcomposition of C from ai, called
the suffix of C from ai, denoted C[i]. The subcomposition will contain the subtree of C
rooted at ai, with the st-predicate and ce-predicate of ai adjusted according to the
execution C[1,i], and the st-predicate and ce-predicate of all other nodes in the subtree
being the same as in C.

C. Transactional Properties

We first define transactional properties for basic activities.
- An execution ai is said to be compensatable if there is a re-execution that will yield the
null termination. It is re-triable if there is a re-execution that will yield a s-termination.
- An activity ai is atomic if every execution of ai guarantees either a complete s-
termination or the null termination.

- Each activity ai in C may first be weakly committed, and then strongly committed
some time after its s-termination.

- Once ai is weakly committed, as stated earlier, it cannot be compensated, and once it is
strongly committed, it cannot be retried.

C2′ C2

C1

I1

C0

C2′ C2″ C2

C1

I1

Figure 4. (a) A composition, (b) An execution of the composition, (c) A
closed c-tree for the execution-tree

I2

C0

(a) (b) (c)

I1

I2

C2′

C0

C1

I2

C2

 14

- The activities in C are (both weakly and strongly) committed in sequence. That is,
when ai is weakly committed, all activities that precede ai in C and have not yet been
weakly committed are also weakly committed. Similarly, strong commitments of the
executions are also in sequence

We now state the transactional properties for the composition.
- Composition C assumes that each of its activities ai is executed atomically. Thus an

incomplete f-termination of ai is assumed to be compensatable, to get an effective null
execution.

- The execution of the entire composition C is intended to be atomic in U. (We
elaborate this later.) That is, an execution of C should eventually yield a complete s-
termination or the null termination.

- Consider an execution E of C.
• If E is an incomplete s-termination, then forward-recovery is carried out by

executing the suffix of E in C or a different acceptable sub-composition, to get a
complete s-termination.

• If E is either incomplete or complete f-termination, then the executions of some
activities may have to be adjusted (partial backward-recovery) to get an incomplete
s-termination, and a forward-recovery is carried out.

• To get the null termination, E has to be compensated. This is the full backward-
recovery.

D. Implementation Issues

(a) Point of Commitment
The execution of an activity ai can be weakly committed any time, and then, after an

s-termination, can be strongly committed any time. Weak commitment immediately after
the s-termination gives pivotal property in the traditional sense. Waiting until the end of
the execution of the entire composite activity will give the compensatability and
retriability options until the very end. The longer the commitment is delayed, the more

a1

Re-execution point

Last strong
commitment point

Compensated
part

Re-tried
part

Adjusted
part

Figure 5. Partial backward-recovery in the Path model

am

al

aj

ak

ai

Strongly
Committed part

Weakly
Committed part

 15

flexibility we have for adjustment on execution of the subsequent activities. However,
commitment of some subsequent activities may force the commitment of ai.
(b) Adaptivity

As mentioned earlier, the ce-predicate will keep changing as the execution proceeds.
(This is illustrated below, in Example 4.) Also, additional execution paths can be added,
as descendents of a node, in the middle of the execution of the composite activity. Some
execution paths may be deleted too. Thus, the composition could be adaptive and
dynamic.
(c) Partial Backward-Recovery

Typically, the recovery starts with re-execution of aj, for some j ≤ i, where ai is the
latest activity that has been or being executed. If aj has to be compensated, then all
activities in the execution following aj are also compensated, and a different child of aj-1
is chosen with possibly an updated ce-predicate at aj-1. If aj is retried, then, after retrying,
aj+1 may need to be compensated or retried. Continuing this way, we will find that for
some k, k ≥ j, the activities in the sequence (aj, …, ak-1) are retried and those in (ak, …, ai)
are compensated. This is illustrated in the bottom half of Figure 5. (The top half is
explained later.) The following example illustrates backward-recovery.

Example 4: In the composition of Figure 4(a), suppose C2 was executed after I1, and I2 fails. It
may be decided that the product be sent back to C1 for some adjustment and inspected, and the
options C2′ and C2″ explored. This would amount to rolling back I2 and C2, and re-executing C1
and I1, each with adjusted st-predicate. Here the adjusted ce-predicate for I1′ will have only C2′
and C2″ options. Suppose C2′ is tried and the execution was successful. Then the execution-tree
will contain all the nodes except C2″, with C2 and I2 as f-terminations. This is shown in Figure 4(b).
Here, nodes for the f-terminated activities are shaded.

In the above argument, the first activity ak+1 that needs to be compensated is
determined after re-executing its preceding activity ak.. It is quite possible, in some cases,
that ak+1 is determined even before re-executing its predecessors. It is also possible that
for some of the activities in (aj+1,…, ak), their previous executions are still valid, that is,
no re-executions are necessary. We simply take this as requiring “trivial” re-executions

In Figure 5, we note that if m is the largest index such that am is strongly committed,
then j > m, and if n is the largest index such that an is weakly committed, then k+1 > n.
This follows since, by the definitions of strong and weak commitments, executions of
activities up to am cannot be retried and those up to an cannot be compensated. In the
figure, an is not shown. It will be between am and ak+1.

(d) Dependencies

Several dependencies are possible between execution states of different activities.
I. In general, any of the compensation, weak commit and strong commit actions on one
activity may require any of these three actions for another activity. Such dependencies are
similar to the abort and commit dependencies for database transactions given by
Chrysanthis and Ramamrithm in [8]. They are given in Table 1. The ‘√’ entries indicate
the possibilities of the corresponding dependencies, and the ‘×’ entries indicate the
impossibility.

 16

Table 1. Dependency-Table

 aj

 ai Compensate Weak
Commit

Strong
Commit

Compensate √ √ √
Weak Commit × √ √
Strong Commit × × √

The relative positions of the nodes ai and aj are as in Figure 5, that is, ai is a

descendent of aj. Each ‘√’ entry in the table describes that the specified action in the
execution of ai requires the specified action in the execution of aj, and also the
dependencies where the roles of ai and aj are reversed. Recall that the s- or f-termination
status of an execution may be known only at a later time. Hence, with respect to Figure 5,
it is possible that the f-termination of aj is known only after ai is executed. Thus, it makes
sense to talk about how the actions on a node affect the executions of its descendents.
Note also the following.

o We assume that both weak and strong commitments are in top-down order.
Therefore, if ai is weakly committed, then aj must be weakly committed too if it
has not been done already. The same applies to strong commitment.

o If aj is compensated, then ai must be compensated too.

II. Several dependencies which involve re-execution are also possible. We arrive at a
general form in several steps.

1. In our formalism, a change in the st-predicate of an activity may change the status of
its earlier execution from s- to f-termination and hence warrant either a re-execution to
get a new s-termination or compensation. That is, a change in the st-predicate value can
account for both retrying and compensation. Therefore, we can define dependencies of
the form:

• An f-termination of an activity changes the st-predicate of another activity and, in
fact, of several activities.

2. Secondly, recall that the st-predicate is a Boolean expression of property-predicates.
Then an f-termination means that some of these predicates are not satisfied. Depending
on the property-predicates that are not satisfied, several f-terminations are possible. We
allow for each of these f-terminations to change the st-predicates of other activities
possibly differently. Therefore, we can expand the dependencies as follows.

• Each different type of f-termination of an activity changes the st-predicates of a
set of activities in a specific way.

3. Dependencies involving s-terminations are also possible. We have seen that different s-
terminations are possible. Each can affect other activities differently.
 Therefore, a general form of dependencies is:

 A specific (s- or f-) termination of an execution changes the st-predicates of a set
of activities in a specific way.

Note that this takes care of another case also: An execution of an activity ak may be an f-
termination (with respect to st-predicate prescribed for that activity) but, for some

 17

reasons, we need to keep that execution. Then, the only way could be changing the st-
predicates of some other activities which in turn change the st-predicate of ak and make
the current execution a s-termination.

III. We can also state dependencies of the following type.
 A specific (s- or f-) termination of an activity triggers compensation, weak

commit or strong commit of executions of some other activities.
 The (compensate, re-execute, weak commit and strong commit) actions on ai

change the st-predicates of some other activities.

(The top half of Figure 5 shows the weak and strong commits triggered by the
compensation or re-execution of the activities in (aj, …, ai).)

The execution of an activity ai can be weakly committed any time, and then, after an
s-termination, can be strongly committed any time. Weak commitment immediately after
the s-termination gives pivotal property in the traditional sense. Waiting until the end of
the execution of the entire composite activity will give the compensatability and/or re-
executability options until the very end. The longer the commitment is delayed, the more
flexibility we have for adjustment on execution of the subsequent activities. However, as
we have seen above, executions and commitments of some subsequent activities may also
force the commitment of ai.

IV. Dependencies constraining the beginning of an execution of an activity can also be
defined. For example, for activities aj and descendent ai possible dependencies are: ai
cannot begin execution until aj (i) s-terminates, (ii) weak-commits, or (iii) strong-
commits. Note that our composition model assumes that the execution of ai cannot begin
until the execution of aj begins.

We end this sub-section with an example that illustrates some dependencies.

Procurement Example
This example is drawn from the contract for building a house explained in Section 1,

that concerns with procurement of a set of windows for the house under construction. The
order will contain a detailed list of the number of windows, the size and type of each of
them and delivery date. The type description may consist of whether part of the window
can be opened and, if so, how it can be opened, insulation and draft protection details,
whether made up of single glass or double glass, etc. The activities are described in the
following. The execution-tree is simply a directed path containing nodes for each of the
activities in the given order, as shown in Figure 6.

P1. Buyer: Order Preparation – Prepare an order and send it to a seller.
P2. Seller: Order Acceptance – Check the availability of raw materials and the

feasibility of meeting the due date, and, if both are satisfactory, then accept the
order.

P3. Seller: Arrange Manufacturing – Forward the order to a manufacturing plant.
P4. Plant: Manufacturing – Manufacture the goods in the order.
P5. Plant: Arrange Shipping – Choose a shipping agent (SA) for shipment of the

goods to the buyer.

 18

P1

Figure 6. Procurement Example

P2

P3

P4

P5

P6

P7

P8

P6. SA: Shipping - Pack and ship goods.
P7. Buyer: Check Goods – Verify that the goods satisfy the prescribed requirements.
P8. Buyer: Make Payment – Pay the seller.

We describe several scenarios giving rise to different
transactional properties.

1) Suppose that once the seller decides to accept the
order, the order cannot be cancelled by the buyer
or the seller, but modifications to the order are
allowed, for example, delivery date changed,
quantity increased, etc. If only the modifications
that do not result in the non-fulfillment and hence
cancellation of the order are allowed, then when
the seller accepts the order, both P1 and P2 can
be weakly committed. (On the other hand, if
there is a possibility of the order getting
cancelled, weak commitment has to be
postponed. We do not consider this case any
further in the following.)

2) There may be a dependency stating that the order
can be sent to the manufacturing plant only after
its acceptance by the seller, that is, the execution
of P3 can begin only after P2 is weakly
committed.

3) The plant may find that the goods cannot be manufactured according to the
specifications, that is, P4 fails. Then the buyer may be requested to modify the order.
For example, if the failure is due to inability to produce the required quantity by the
due date, then the modification could be extension of the due date or reduction of the
quantity or both. (Similar situation arises when the buyer wants to update the order
by increasing the quantity.) This will result in a re-execution of P1 followed by a re-
execution of P2. Then the past execution of P4 may be successful or a re-execution
may be done. Weak commitments of P1 and P2 allow for such adjustments.

4) If the buyer finds that the goods do not meet the type specifications, that is, P7 fails,
then, P4 has to be re-executed. In addition, P5 and P6 have to be re-executed. (This
situation may arise also when the plant realizes some defects in the goods and
“recalls” them after they were shipped.) Here, the re-executions may consist of the
buyer shipping back the already received goods to the plant and the plant shipping
the new goods to the buyer. An example is: two of the windows have broken glasses
and a wrong knob was sent for a third window. (The knob has to be fixed after
mounting the window.) Then, replacements for the two windows have to be made
(in P4), the damaged windows and the wrong knob have to be picked up and the new
ones delivered, perhaps by the same shipping agent (in which case the re-execution
of P5 is trivial).

5) The shipping agent is unable to pack and ship goods at the designated time, that is,
P6 fails. Then either the delivery date is postponed (adjustment in the st-predicate of
P1) or the plant may find another shipping agent, that is, P5 is re-executed. In the
latter case, it follows that P6 will also be re-executed

 19

4.2. Tree Model
We now present an extension, called the tree model. Here, we consider compositions

that allow for more than one child to be executed at non-leaf nodes. Therefore, the
execution yields a tree, instead of just a path, as a composite activity. The features of this
model are essentially the same as in the path model. The difference is only in the
complexity of the details. We outline the details in the following.
A. Composition

Here also, a composition C is a tree and it is a part of a higher level composition U. A
st-predicate is associated with C. A st-predicate and a ce-predicate are associated with
each node. These will be derived from the st-predicate of C. The ce-predicate is null for
all leaves of C. The ce-predicate at non-leaf nodes may be sophisticated.
• More than one child may be required to be executed.
• In general, several sets of children may be specified with the requirement that one of

those sets be executed.
• These sets may be prioritized in an arbitrary way.
• Execution of children within a set may also be prioritized in an arbitrary way.

B. Execution
 An execution E of C yields a composite activity C, which is a sub-tree of C, namely,

an execution-tree, such that
- It includes the root and some descendents;
- Some nodes are (fully compensated) f-terminations; If a node is an f-termination,

then all descendents of that node in the execution tree are also f-terminations; and
- The execution of each s-terminated node satisfies the st-predicate prescribed for

that node, and the non-f-terminated children of each non-leaf node of the sub-tree
satisfy (fully or partially) the ce-predicate specified in C for that node.

An s-termination of C is an execution of C such that the non-f-terminated nodes yield a
sub-tree of C that contains (i) the root, (ii) some leaves of C and (iii) all nodes and edges
in the paths from the root to those leaves.

A partial execution E of C will be represented by a sub-tree of C consisting of all the
nodes of C that have been executed so far and the edges between them. The suffix of the
execution E can be defined similar to that in the path model. It will consist of sub-trees of
C rooted at some of the leaves of the execution tree, with st- and ce-predicates properly
adjusted.
C. Transactional Properties
The following definitions refine those given for the path model.

- We say that the execution ai is locally compensatable if the execution can be
undone to get the null termination. We also define another notion: ai is
compensatable relative to C if either ai is locally compensatable or it can be
compensated by executing a compensating activity within C.

- Similarly, an execution ai is locally retriable if there is a re-execution that will
yield an s-termination. And, ai is retriable relative to C if either ai is locally
retriable or additional activities can be executed in C to get the effects of an s-
termination of ai.

- An execution ai is locally weakly committed if it is locally non-compensatable
(but locally retriable) and weakly committed relative to C if it is non-

 20

compensatable relative to C (but retriable relative to C). The strong commit
properties are similar.

- We define atomicity of a basic activity also in two ways: ai is locally atomic if
every execution guarantees either a complete s-termination or the null
termination; and it is atomic relative to C if either it is locally atomic or (i) any
non-null f-termination can be compensated by executing a compensating activity
in C and (ii) any incomplete s-termination can be extended to a complete s-
termination by executing additional activities in C. Composition C expects that
each of its activities ai is atomic relative to C.

- Again, the execution of the entire composition C is intended to be atomic in U.
That is, an execution of C should yield a complete s-termination or the null
termination. Therefore, if an s-termination of an activity ai is not possible in some
execution, then (that execution of ai is compensated and) execution of a different
set of children satisfying the ce-predicate of its parent is tried. If unsuccessful,
then a different s-termination of the parent is tried. If not, similar adjustments at
the grand-parent level are tried, and so on. Thus, either a complete backward
recovery yielding the null termination or a partial backward recovery followed by
forward execution to get an s-termination of C is carried out. Forward-recovery
of E will consist of execution of the suffix of E. Partial backward-recovery of E
will again consist of retrying the executions of some of the activities of the
execution-tree, and compensating some others. This is illustrated in Figure 7.

D. Implementation Issues
All the issues discussed in the path model section are applicable here also. In the

general case, where the execution-tree is a tree (see Fig. 7), the dependencies and the
partial rollback are similar to the path case. The difference is only in the complexity of
the details. All the dependencies discussed so far are applicable in the general case also,
both for vertically (that is, ancestrally) and horizontally related activities. In addition, for
horizontally related activities ai and aj, all combinations in the Dependency-Table 1 are
possible, that is, all entries will be ‘√’. Dependencies that involve ce-predicates are also
possible. A general statement would be:

 A specific (s- or f-) termination, compensate, weak and strong commit actions of
an activity changes the ce-predicates of some other activities.

Re-executed
part

Compensated
part

Figure 7 Partial backward-recovery in the Tree-model

 21

We discuss some additional issues in the following.
(a) st- and ce-predicates

We have associated an st-predicate and a ce-predicate with each activity in our model.
They are activity-dependent. We can expect that they can be expressed more precisely for
some activities than for some others. In fact, for some activities, what constitutes s-
termination may not be known until after an execution of that activity, and even after the
execution of many subsequent activities. We note also that the st-predicate of a composite
activity determines the st-predicate and the ce-predicate of its constituent activities.
Hence, specification of the st- and ce-predicates is crucial. This will be the role of the
(activity and) workflow semantics.

Whereas the semantic specification of ce-predicate would be application-dependent,
syntactic specification may be made more precise, with an appropriate language. We can
expect that such a language would have constructs for specifying priorities and Boolean
connectives. An example is booking an all (flight-hotel-food) inclusive package, and if it
is not available then booking flights and three-star hotels separately, for a vacation.

The ce-predicate allows specifying preferences in the selection of the children
activities to be executed. Preferences may exist for s-terminations too. This may depend
on functional as well as non-functional aspects of the execution. Such preferences can be
incorporated in the model easily.

In a multi-level set up, the activities that are re-executed or rolled back would, in
general, be composite activities, that too executed by different parties autonomously.
Therefore, the choices for re-execution and roll back may be limited and considerable
pre-planning may be required in the design phase of the contract.
(b) Closure of Composite Activities

A composite activity C also can be closed in three different states depicted in Figure
2, namely, null termination, (incomplete or complete) non-null f-termination, and
(complete) strongly committed s-termination. The null execution might be the result of
executing a compensating activity. Therefore, in any of these terminations of C, the
constituent activities of C might be closed in any of the three terminations. Now, C may
be closed either before or after some or all of the constituent activities of C are closed. An
example of the former would be not waiting for the closure, or even termination, of some
activities that compensate some other activities in the original execution of C, that are
guaranteed to succeed

Procurement example revisited: In the example
illustrated in the last sub-section, suppose the seller
splits the order into two parts and assigns them to two
plants Plant-A and Plant-B. Then the node P3 will
have two children and its ce-predicate will contain the
details of the individual orders. Corresponding to P4,
P5 and P6, we will have P4-A, P5-A and P6-A for
Plant-A, and P4-B, P5-B and P6-B for Plant-B. This
is shown in Figure 8. We describe a few scenarios and
the resulting dependencies.
1) The seller may decide that shipping should not start

Figure 8. Procurement example
with two plants

P4-A

P5-A

P6-A

P4-B

P5-B

P6-B

P3

 22

until all the goods in the order have been manufactured. The gives rise to the
dependencies: begin P5-A and P5-B only after both P4-A and P4-B s-terminate.
2) P5-A fails, that is, Plant-A is unable to find a shipping agent. Then, the shipping agent
of Plant-B may be asked to ship the goods of Plant-A also. This may involve changing
the st-predicate if the execution of P6-B has not been done or re-execution of P6-B
otherwise.
3) The buyer is not satisfied with the goods manufactured in Plant-A, that is, P7 fails.
Then, the seller might settle for the buyer returning those goods and Plant-B manufacture
those goods and send to the buyer. This involves changing the ce-predicate at P3,
compensation of P4-A, P5-A and P6-A, and re-execution of P4-B, P5-B and P6-B.

4.3. Multi-Level Model
So far, we have dealt with compositions at a single level, in fact, the bottom-most

level where all activities are basic activities. Now we extend the model by allowing basic
or composite activities in the compositions. This gives us a multi-level, hierarchical,
composition model. The highest level activity is the contract-activity. In the previous
sections, a composition C is described as a tree. An execution of C yields a composite
activity C, which is a path graph in the path model and a tree in the tree model. We call
(both of) them a composite activity tree, or c-tree in short.

An outline of the multi-level model is the following.
• Composition

A composition C is a tree as in the tree model. Nodes in the tree are
(sub)compositions of basic or composite activities. Compositions of composite activities
are, again, trees as in the tree model. Thus C is a “nested” tree. An st-predicate is
associated with C.
• Execution

Execution of each subcomposition of C yields a c-tree. (For a basic activity, the c-tree
will have just one node.) To put these trees together, we use the following notation. A c-
tree is converted to a one source one sink acyclic graph by adding edges from the leaves
of the tree to a single (dummy) sink node. We call this a closed c-tree. Figure 4(c) shows
a closed c-tree for the execution-tree in Figure 4(b). Figure 9 illustrates the two-level
composition for the Procurement example.

In the execution of a multi-level composition C, at the top level we get a closed c-tree
with nodes corresponding to the executions of activities in C. Each of the activities will
again yield a closed c-tree. Thus, the graph can be expanded until all the nodes
correspond to basic activities.

Partial execution is considered as in the tree model, level by level, in nested fashion.
• Transactional Properties

At each individual level, for each node, the transactional properties discussed with the
tree model are applicable. After the recovery of one node, the recovery efforts at the
parent level execution will continue.

We have already discussed s-terminations and f-terminations of composite activities.
We can define compensatability, retriability and commit properties as well as atomicity
for composite activities as we did for basic activities, namely, both locally as well as
relative to the parent level composite activity U. For example, C is locally compensatable

 23

if the null effect can be obtained by simply modifying the composition C and executing,
and is compensatable relative to U if it is compensatable either locally or by executing a
compensating activity, say C′, within U. In the latter case, C′ will also be specified as a
tree with suitable st-predicate. (For example, if the original execution is building a garden
shed in the backyard, the compensation might be the demolition of that shed.)

We can also extend these definitions across multiple levels. For example, in the above
case where C is compensatable relative to U, we say that ai is also compensatable relative
to U even if ai is not compensatable relative to C. By this, we mean that the effects of ai

can be compensated either by compensation of C by C′ or by a compensating activity ai′,
both in U. The definitions for retriability are analogous. Thus, in general, re-execution of
a composite activity would require adjusting the composition of that activity in terms of
adding and/or deleting some nodes and adjusting the st- and ce-predicate of the nodes.
This can also be thought of as coming up with a new composition for that activity,
mapping the previous execution on the new composition, identifying the s-terminated
part, and doing a backward- and/or forward-recovery. The re-execution and adjustments
of the st- and ce-predicates will then be top-down.

Example 5: In Example 2, suppose the addresses are printed and the stamp glued, and we find
later that the To address is incorrect. If the affixed stamp cannot be removed, the activity a2 is
non-compensatable, but only relative to C. The activity C itself may be compensatable relative to
U, amounting to just tearing up the envelope and bearing the loss of the stamp. Then, though a2
itself is not compensated the composite activity containing a2 is compensated.

Similarly, the commitment properties at the two levels are also independent of each
other. We give two examples. (1) Activity ai could be strongly committed, meaning that
it cannot be compensated or re-executed in C, but C itself may be weakly committed

Figure 9. Two-level composition for the Procurement example

P4-A

P5-A

P6-A

P4-B

P5-B

P6-B

P3

P7

P8

P1

P2

 24

relative to U, meaning that it may be re-executed perhaps with additional activities. C
could be weakly committed even if some activities of C are not executed yet, if retrying
of C can be carried out by compensating the current execution completely and re-
executing it to get an s-termination. (2) An example of ai being weakly committed and C
being strongly committed is that of fixing (perhaps in the warranty period) a broken pipe
after the construction of the house is finished and the builder paid fully. Thus our model
allows, as mentioned in Section 1, re-executing even a “committed” activity, by dealing
with commitment in multiple levels.
D. Implementation Issues

All the issues discussed for the single level (bottom level) composition are applicable
here also within each level, and also across levels. For example, suppose as before that ai
is an activity of C which is a composite activity of U, and C’ is another composite
activity of U. We may have a dependency of the type: if ai is strongly committed then C’
has to be compensated.

Some of the activities (usually high level ones) will correspond to parts of the
contract or subcontracts. As noted earlier, at the highest level, the composition is for the
entire contract-activity. On closure of such activities, the corresponding contracts
themselves might be closed. Closure of a contract intuitively refers to expiring the “life”
or validity of the contract. For example, a contract for building a house may close after
the warranty period during which the builder is responsible for repairs. A sub-contract for
maintaining an air-conditioning system installed in that house may close at a different
time. The transactional properties in our model can be used to refine the conditions for
closure of the contracts.

5. Monitoring Payments
In this section, we address the vital issue of payments in e-contracts. Payments are

meant for the execution of the activities in the e-contract. Hence, we should be able to
ascertain that the activities have been executed (or compensated) satisfactorily to deserve
payment. We are concerned with three critical aspects that dictate the payments for an
activity: the cost of execution of the activity; the amount of payment for the execution;
and the time of payment for that activity. All these require a good understanding of the
execution states of the activities and hence the e-contract.

5.1. Cost and payment
Below we discuss different ways of assigning cost and the amount of payment for an

execution. Let C be a composite activity consisting of basic activities a1, a2, etc. There
are two aspects – cost of execution of an activity ai (i) for ai and (ii) for C, that is, the cost
charged to C and hence to be paid by (the service executing) C to (the service executing)
ai. We look at both of them. We use cost(ai) and payment(ai) to denote (i) and (ii),
respectively.
Cost:

- A cost may be associated with each execution related to ai. The total cost cost(ai)
will depend on the number of executions related to ai.

 25

- Different s-terminations are possible. They may have different costs. (For example,
fully refundable flight tickets normally cost more than non-refundable tickets.)
We will not concern about how the costs are arrived at.

- A non-executed null termination will cost nothing. If an activity ai has been
executed and then compensated, even if the resulting execution is effectively null,
a cost may have to be associated.

- With non-null f-terminations also, a cost may be associated.
- Each re-execution may incur additional cost. Therefore, as the number of re-

executions (as depicted in Figure 3) increases, the cost of the activity cost(ai) will
keep going higher.

- Therefore, the final cost of execution, cost(ai), will depend on the number of (re-
executions and hence) terminations, and will be known to ai only when its
execution is strongly committed.

Payment:
- Payment for ai, namely, payment(ai), may not directly depend on the number of

executions related to ai.
- The cost of an execution resulting in a f-termination and the cost of compensating

that execution may not be charged for the payment.
- When several re-executions are done, the costs for some of them may not be

charged.
- The above considerations apply when the payment amount is determined after the

execution of the activity. However, depending on which costs are not charged to C,
payment(ai) may be known earlier. For example, if the charge is zero for a
compensated ai, it can be known even before the compensation is complete, and if
re-execution costs are not charged to C, then payment(ai) can be known on weak
commitment of ai.

- On the other hand, payment(ai) could be fixed even before the execution of ai
starts, for example, when the parties are entering into contracts. Then the amount
could be based on the number of anticipated re-executions and the prospects of
arriving at a satisfactory s-termination eventually.

The cost and payment for a composite activity will depend on the costs and payments

for the individual activities in the composition that are executed.

We now illustrate some scenarios in the Procurement example of Section 4.

• When the goods are not delivered on time (P6), the buyer can insist on canceling
the order. Then, a cost is incurred in the initial delivery of the goods as well as in
the return of the goods as part of canceling the order, though the effective
execution of that activity is null.

• Consider another related clause: “If the goods are not confirming as per the
contract, the buyer may require the seller to remedy the lack of conformity by
repair.” Then further costs are involved in returning the goods, repairing them and
sending them back to the buyer.

 26

There are two aspects for payment(s) for an activity also – enabling payments and
making payments. Payment options include the following:

- For each activity, either a single payment or multiple (partial) payments may be
enabled at various terminations depicted in Figure 3. Similarly, payments can be
made just once or in several installments. The number of installments need not
correlate with the number of enabling points.

- A payment can be (partly or fully) refundable or non-refundable. In the former
case, we need to calculate refund with respect to payments made previously (for
example, when some activity that has been prepaid has not been executed). In the
latter case, making payments may be delayed until a good estimate of the cost of
execution is obtained.

- As stated earlier, the actual cost of execution may be known only after strongly
committed s-termination or f-termination. Then, any payments done in other states
may have to be adjusted at the end. We will not consider the details (such as the
time and the amount) of the adjustments in this paper.

A payment monitoring system should keep track of the state of termination, payment-
enabled and payment-made points and the amounts, for each activity.

5.2. Payment for Basic Activities
We first consider the bottom-most level, where each composite activity is composed

of basic activities; the general model for activities at multiple levels is considered in the
next sub-section. The same composition model described in section 4 is applicable for
handling payments.

Each activity in the execution-tree has to be paid for.

- For each activity, payment(s) may be enabled and made in any of the terminations of
execution of that activity, as discussed earlier (see figure 3), and also in the states of
weak or strong commits relative to C. In addition, payment for ai may be enabled either
when ai is locally weakly committed or only when it is weakly committed relative to C,
meaning that it will not be compensated even by a compensating activity in C.

- If an execution ai is compensated by execution ai′ of a compensating activity, then both
ai and ai′ will appear in the execution-tree, and costs may be attributed to them
individually.

- Similarly, if re-trying of ai is done by executing additional activities, their executions
will also be in the execution-tree and costs can be assigned to them.

- Enabling and making payments for different activities can occur at different times.
- Dependencies may exist between enabling/making payments of different activities.
- Dependencies may also exist between enabling/making payments for one activity and

starting the execution of (and similarly, compensating, weakly committing and strongly
committing) another activity, and vice versa.

- At any stage, the activities whose payments have been enabled and those whose
payments have been made are kept track of with a payment-enabled-tree and a
payment-made-tree, respectively.

 27

C0

C2′ C2″ C2

C1

I1

Figure 10. A payment-made-tree for the
composition

We note that the execution-tree and the two payment trees are all sub-trees of the
composition graph C. As the execution of the contract progresses, all the three trees will
grow. By comparing them, the correspondence between the execution of the activities
and enabling/making payments for them can be obtained.

Example 6: For the case discussed in the
Example 4, a payment-made-tree could have all
the nodes except I2. This is shown in Figure 10.
Comparing with the execution-tree described in
Figure 4(b), payment for I2 has not been done
yet, and payment for C2″ has also been done
even though only one of C2′ or C2″ is to be
executed. The payment for the non-executed
activity has to be adjusted later on.

The cost of an execution E of a
composite activity C is simply the sum of
the payments for the executions of its
constituent activities.

Below we present a small example to illustrate the execution of activities and terms of
payments. In the house-building contract, consider a sub-task involving construction of a
wall and painting it. The activities are shown in Table 2. The work begins with the
gathering of all required materials such as bricks, cement, paint, paint brushes, etc. On
Inspection-I, if some materials are missing, then they are also gathered (re-execution of
activity 1). Once all the materials are gathered, a 20cms thick wall is constructed as per
the building specifications. After this process, Inspection-II is done to check the strength
of the wall and the quality of the job done. If slight fixing is needed, some more work is

Table 2. Some activities and payments of an example: construction and painting job of a wall
Activity Specification Execution Commitment Aspect Terms of

Payments
1. Material acquisition
1a. Acquisition of additional

material

Materials gathered

2. Inspection-I

 Materials found missing
 Materials found in order

Re-execute 1 (1a) and 2
Weak commit 1, 2

Payment-1 (for 1
and 2) due

3. Building 20cms thick wall
3a. Doing slight fixing
3b. Demolishing wall
3c. Building 30cms thick wall

Wall constructed

4. Inspection-II Slight fixing required
 Wall not strong enough

 Construction done in order

Re-execute 3 (3a)
Compensate 3 (3b), retry 1
(1a), & 2, and re-execute 3
(3c) and 4

Strong commit 1-4

Payment-2 (for 3, 4,
& re-executions of 1-
4, if any) due

5. Painting the wall
5a. Do undercoat
5b Do overcoat

Undercoat and one overcoat

Do not start until
Payment-1
and Payment-2
received

6. Inspection-III Very bad paint job

 Another overcoat needed

 Job done in order

Re-execute 5. (5a and 5b)
and 6
Weak commit 5; Retry 5
(5b), 6.
Strong commit 5,6

Payment-3 due

 28

done (re-execution) and then the inspection is carried out again. If (zero or more) slight
fixes do not yield satisfactory results, the wall is demolished (compensating activity) and
a 30cms thick wall is built, starting from acquisition of further material. (This is a partial
roll back of the execution.) Even with the new wall, slight fixing and/or complete
demolishing and re-building may occur, in fact, several times. Eventually, when the wall
is constructed to the satisfaction, it is painted.

The re-execution and compensation details are given in the table. Re-executions
carried out after weak commits are stated as retrys. Weak and strong commit points for
the various activities are also given. On weak commit of activities 1 and 2, the acquired
materials cannot be returned (activities cannot be compensated). When the wall is
constructed according to satisfaction, activities 1 to 4 are strongly committed. Note that
activities 3 and 4 are directly strongly committed, without earlier weak commit. For the
paint job, weak commit occurs when it is found that another undercoat is not required,
and strong commit occurs when the painting is completely satisfactory.

The table states the terms for three payments: when they are due and the requirement
that the first two payments must be received before painting of the wall can start. The
costs for the execution, including re-executions and compensations, are included in the
payment descriptions.

Table 3 shows the costs while executing the activities as given in Table 2. The cost of
the first execution, compensation and re-execution are denoted as C, CS and RE
respectively, followed by the activity number specified in Table 2. Note that, in a normal
straightforward situation, the expected cost of the composite activity for construction and
painting of the wall is C1 + C2 + C3 + C4 + C5 + C6. However, due to multiple re-
executions and compensation, the total cost may become higher than the expected cost.

5.3. Multi-level Composition
For computing the cost as well as keeping track of the payments, a straight-forward

approach is to use the (multi-level) execution-tree and similarly the corresponding
payment trees. All these will be updated, as the execution proceeds and payments are
enabled and made. One way of computing the cost of a composite activity is considering
the single level execution tree of that activity. For example, in a composition U consisting
of a composite activity C which again consists of basic activities ais, payment(ai) of each
ai (which is the amount charged to C) is added to get cost(C). However, payment(C) may
be different, and this is the amount used, for each constituent activity of U, to compute
cost(U). Thus the costs can be computed recursively, in bottom-up fashion.

For keeping track of the payments also, several sub-trees (of the fully nested payment
trees described above) can be used depending on the level of detail that we are interested
in. For example, considering the composite activity C, if at the level of U, only the lump-

Table 3. Costs for execution of the activities described in Table 2

Payments Activities Related Cost Incurred (as per Column 3, Table 2)
Payment-1 Activity 1 and Activity 2 C1 + C2 + RE1a + RE2

Payment-2 Activity 3 and Activity 4
Re-executions of 1 to 4 if any.

C3 + C4+ RE3a + CS3b + RE1a + RE2 + RE3c + C4

Payment-3 Activity 5 and Activity 6 C5 + C6 + RE5a + RE 5b + C6 + RE5b + C6

 29

sum payment for C is of interest, then there is no need to expand the node corresponding
to C to the sub-tree representing the execution of the activities of C. (This latter sub-tree
will be used at the level of C.) This will be appropriate, for example, when C is a sub-
contracted activity, executed and managed by a different party.

The extended definitions of transactional properties allow enabling and making
payments in sophisticated ways. For example, payment for ai can be enabled only when it
is weakly committed relative to U. This policy might be appropriate when payment
authorizations come from U and not from C.

The various dependencies can be defined between activities at different levels too.
For example, payment for ai may be enabled after payment for U is enabled and
irrespective of whether payment for C is enabled. Another example is starting the
execution of some activity D in U only after payment is made for ai.

5.4. Discussion
We have expressed that costs are determined by the executions. It is also possible that

costs and payments influence the execution. Examples are:
- We associated a cost for each retry. Then, the total cost for execution of an activity

will increase with the number of re-executions. If a maximum cost is stipulated for an
activity, then that could limit the number of re-executions.

- Payment may influence the time of commitment. For example, a non-refundable
payment can be associated with weak commitment which can be delayed until it is
certain that the execution does not need to be compensated. Similarly, if no retrys can
be expected after payment, then strong commitment can be combined with the
payment.
Activities in e-contract may be executed autonomously. Then, details of payments for

them may also be kept autonomously. The ability to deal with payment trees of different
levels, with activities described at different depths of the hierarchy, supports the
autonomy.

In the literature, the inter-dependency among contract satisfaction, activity execution
and payments has not been explicitly modeled. The utility of such modeling in deploying
and managing the commitment and payment aspects of e-contract is immense. Some of
the open issues in this problem domain are: initiating payment transactions for making
appropriate payments; extraction of related clauses for payments and monitoring of
payments; and finding profitable contracts in an organization when multiple contracts are
in execution. It is expected that, in future, e-contract management systems will
seamlessly process contracts and monitor their completion and payment aspects.

In contracts, payment terms are arrived at based on negotiations. Normally, we can
expect that all payments will be made before the closure of the contract. However, there
are exceptions some of which may be very sophisticated. An example is a contract for the
construction of a flyover in which (a part of) the payment is through toll gate collection
for a few years after the construction is finished.

6. Conclusions
In this paper, we have presented a framework for e-contract commitment by

considering transactional properties for executions of activities of the e-contract. To the

 30

best of our knowledge, this has not been done in the literature so far. Accommodating the
transactional properties can improve an e-contract design and, in turn, help in the
enactment of the underlying contract. Some important aspects are the following.
i. Level-wise definitions of compensatability and retriability clarify the properties and

requirements in the executions of activities and sub-activities, in contracts and sub-
contracts. This helps in delegating responsibilities for satisfying the required
properties in the executions to relevant parties precisely and unambiguously.

ii. Closure of the contract can be tied to closure of the activities and commitments.
Features such as “the life of a contract may extend far beyond the termination of
execution of the activities” are accommodated fairly easily.

iii. Terms of payments for the activities (including the contract-activity) can be related to
the execution states of the activities.
The transactional properties described in this work will be useful in other applications

also, irrespective of whether the activities are electronic, non-electronic or both.
An e-contract system must ensure the progress of activities and their termination.

Since e-contracts consist of multiple activities executed with several inter-dependencies,
any failure could have cascading effects on other executed or executing activities. In this
work, we have also brought out these dependencies explicitly and facilitated solutions
that can be incorporated within an e-contract system. This study will be helpful in
monitoring behavioral conditions stated in an e-contract during its execution.

References
 [1] Alonso, G., Agrawal, D., Abbadi, A.E., Kamath, M., Gunthor, R., and Mohan, C., Advanced

transaction models in workflow contexts, In Proc. of the 12th International conference on
Data Engineering (ICDE '96), pp. 574-581,1996.

[2] Chen Q. and Dayal U., A Transactional Nested Process Management System. Proc. 12th
Intl. Conf. on Data Engineering,pp.566-573, 1996.

[3] Chiu, D. K. W., Karlapalem, K., Qing Li. and Kafeza, E.: Workflow View Based E-
Contracts in a Cross-Organizational E-Services Environment, Distributed and Parallel
Databases, 12, 2/3, 193-216 (2002).

[4] Chiu, D. K. W., Cheung, S. C. and Till, S., A Three-Layer Architecture for E-contract
Enforcement in an E-Service Environment, 36th Hawaii ICSS, 2003.

[5] Chrysanthis, P. K., and Ramamritham, K., ACTA: A Framework for Specifying and
Reasoning about Transaction Structure and Behavior. Proceedings of the ACM SIGMOD
International Conference on Management of Data: 194-203, 1990.

[6] Chrysanthis, P. K. and Ramamritham K.: A Formalism for Extended Transaction Models,
Proc. of the 17th Int. Conf. on Very Large Data Bases, 103–112 (1991).

[7] Desai N., Narendra N. C. and Singh M. P., Checking Correctness of Business Contracts via
Commitments, Proc. of 7th International Conference on Autonomous Agents and
Multiagent Systems (AA-MAS 2008), Estoril, Portugal, 2008.

[8] Dayal U., Meichun Hsu, Ladin R., A Transactional Model for Long-Running
Activities. VLDB 1991: 113-122, 1991.

 31

[9] Farrell A. D. H., Marek J. Sergot, Bartolini, C., Salle, M., Trastour, D. and Christodoulou,
A., Using the Event Calculus for the Performance Monitoring of Service-Level Agreements
for Utility Computing. First IEEE Int. Workshop on Electronic Contracting, 2004.

[10] Grefen, P. and Vonk, J.: A Taxonomy of Transactional Workflow Support, International
Journal of Cooperative Information Systems, 15, 1 87-118 (2006).

[11] Grefen, P., Aberer, K., Hoffner, Y. and Ludwig, H., CrossFlow: Cross-Organizational
workflow management in Dynamic virtual enterprises, Int. Journal of Computer Systems
Science and Engineering, 15 (5) (2000) 277-290.

[12] Grefen, P., Vonk, J. and Apers, P., Global transaction support for workflow management
systems: from formal specification to practical implementation. The VLDB Journal 10,
pp.316-333, 2001.

[13] Grosof, B. and Poon, T., SweetDeal: Representing Agent Contracts with Exceptions using
XML Rules, Ontologies and Process Descriptions, Proc. of the 12th WWW Conference
(2003).

[14] Jain A.K., Aparicio IV M. and Singh M. P., Agents for Process Coherence in Virtual
Enterprises, Communications of the ACM, 42(3), (1999) 62-69.

[15] Kafeza, E., Chiu, D. and Kafeza, I.: View-based Contracts in an E-service Cross-
organizational Workflow Environment, In: Proc. of 2nd Int. Workshop on Technologies for
E-service (2001).

[16] Koetsier, M., Grefen, P., and Vonk, J.: Contract Model, Technical Report, Cross-
Organizational/Workflow, Crossflow ESPRITE/28635 (1999).

[17] Krishna P. R., Karlapalem K. and Dani A. R., From Contracts to E-contracts: Modeling and
Enactment, Information Technology and Management, 6, (2005), 363-387.

[18] Papazoglou M. P., Web Services and Business Transactions, World Wide Web: Internet and
Web Information Systems, 6 (2003), 49–91.

[19] Rouached, M., Perrin, O. and Godart, C., A contract-based approach for monitoring
collaborative web services using commitments in the event calculus, WISE05, 426–434,
2005.

[20] Schuldt, H., Alonso, G., Beeri, C., Schek, H.J.: Atomicity and Isolation for Transactional
Processes, ACM Transactions on Database Systems, 27, 63-116 (2002).

[21] Vidyasankar, K.: Atomicity of Global Transactions in Distributed Heterogeneous Database
Systems, Proc. of the DEXA-91, 321-326 (1991).

[22] Vidyasankar, K. and Vossen, G.: A Multi-Level Model for Web Service Composition, In:
Proc. of the 3rd IEEE International Conference on Web Services, San Diego, U.S.A., pp
462-469 (2004).

[23] Vidyasankar, K. and Vossen, G.: Multi-Level Modeling of Web Service Compositions with
Transactional Properties, Technical Report, Memorial University, St. John’s, Canada,
(2007).

[24] Vidyasankar K., Radha Krishna P., and Kamalakar Karlapalem, A Multi-Level Model for
Activity Commitments in E-contracts, CoopIS 2007, Portugal, LNCS 4803 Part 1, pp. 300-
317, 20072007.

[25] Vidyasankar K., Radha Krishna P. and Kamalakar Karlapalem, Study of Execution Centric
Payment Issues in E-contracts, 2008 IEEE International Conference on Services Computing

 32

(SCC 2008) July 8-11, 2008, Honolulu, Hawaii, USA, IEEE Computer Society, Vol 2, pp.
135-142, 2008.

[26] Vidyasankar K., Radha Krishna P. and Kamalakar Karlapalem, Study of Dependencies in
Executions of E-contract Activities, 13th East European Conference on Advances in
Databases and Information Systems (ADBIS), LNCS 5739, pp. 301-313, 2009 2009.

[27] Wang, T., Grefen, P. and Vonk, J.: Abstract Transaction Construct: Building a Transaction
Framework for Contract-driven, Service-oriented Business Processes, In: Proc. of the
ICSOC- 2006, LNCS 4294, Springer, pp. 434-439 (2006).

[28] Xu, L.: A Multi-party Contract Model, ACM SIGecom Exchanges, 5, 1, 13-23 (2004).

	Vidya's Technical report 2010-01 cover.pdf
	Journal Paper-Vidya 2010-01.pdf

