GLMM workshop 18 March 2021 University of Manitoba Instructors: David Schneider, Victor Valdez, with assistance of Taurai Matengu

First session	10 AM	Online	Writing the model
Break			
Second session	11 AM	Online	F-ratios from Expected Mean Squares
Break			
Third session	1 PM	Online	Executing the analysis in R

Goal of the first session – Writing Statistical Models	
GLM The General Linear Model	Fixed Effects + Normal Error
GzLM The Generalized Linear model	Fixed Effects + Non-normal Errors
GLMM The General Linear Mixed Model	Fixed + Random + Normal
GzLMM The Generalized Linear Mixed Model	Fixed + Random + Non-normal

Goal of the second session - Writing out the expected mean squares Forming unambiguous likelihood ratio tests (*F*, *t*, χ^2)

Goal of the third session - Executing a GLMM in a statistical package Interpreting the output

First session 10 AM Writing the model

Preliminaries

DefinitionsNominal, Ordinal, Interval, and Ratio scale variables.Definitions:GLMGzLMGeneral Linear ModelGLMMGeneral Linear Mixed Model

GzLMM Generalized Linear Mixed Model

Series of examples to work through.

Distinguish response from explanatory variables

Assign symbols to all variables

Notational conventions Nominal scale variable ALL UPPER CASE

Ratio scale variables Begin with upper case.

 β for fixed effect coefficients (slopes and contrasts)

 μ for random effect parameters

Write the model, calculate the df, complete the first 2 columns of the ANOVA table

GLM with a single fixed explanatory variable 3 examples.

Write the Fixed Effect GLM, calculate df, fill in the blank columns of the ANOVA table.

1. Pea section growth data, from Box 9.4 in Sokal and Rohlf (1995).

Does length depend on treatment (control versus 4 different sugars with auxin present)?

10 measurements of length of pea section in each treatment group

Length	Len	Response variable, ratio scale
Treatment	TRT	Categorical explanatory variable
Write the model Calculate df		$Len = \beta_o + \beta_{Trt} TRT + \varepsilon_{Normal}$ (10*5) = 1 + (5-1) + 45

df total = ntot -1 TRT df = number of categories -1

Fill out first 2 columns of ANOVA table from model <u>http://www.mun.ca/biology/schneider/b4605/LNotes/Pt3/Ch10_3.pdf</u> <u>http://www.mun.ca/biology/schneider/b4605/GLMMworkshop/Data/PeaSections.csv</u>

2. Example 9.3.1 from Snedecor and Cochran (1989). Quantity of interest is the phosphorus content of corn (*Pcorn* in ppm), in relation to the phosphorus levels in samples of soils with experimentally fixed levels of phosphorus (*Psoil* in ppm). Does the phosphorus content of corn increase when organic soil phosphorus is increased? *Pcorn* and *Psoil* are both ratio scale variables. 9 measurements of *Pcorn*, matched with 9 of *Psoil*

Model

df _____

http://www.mun.ca/biology/schneider/b4605/LNotes/Pt3/Ch9_1.pdf

http://www.mun.ca/biology/schneider/b4605/GLMMworkshop/Data/PCorn.csv

Sketch graph of response vs explanatory

Source	df
TRT	
error	
total	49

Sketch graph of response vs explanatory

Sourcedferror7total

GLM with a single fixed explanatory variable 3rd example.

3. Does inversion heterozygosity (HZYG) change with elevation above sea level (Hsl) in *Drosophila pseudoobscura*). Data are from Dobzhansky (1948) as reported in Brussard (1984). One measurement of HZYG at each of 7 different elevations.

Response variable with symbol	

	Explanatory variable with symbol	
--	----------------------------------	--

Model			

df _____

GLM with a single fixed explanatory variable Review

Definition of fixed effects:

- 1. *TRT* is a fixed effect because we are interested in the contrast among the 5 means. β_{TRT} is a set of unknown fixed effect contrasts.
- 2. *Psoil* is a fixed effect because we are interested in rate of increase in *Pcorn* with increase in *Psoil*.

 β_{Psoil} is the unknown rate.

3. *Hsl* is a fixed effect because we are interested in the whether *Hzyg* changes with elevation (altitude above sea level)

 β_{Hsl} is the fixed effect rate. $\hat{\beta}_{Hsl}$ is an estimate of β_{Hsl}

Source	df
	5

GLM with two fixed explanatory variables 3 examples Factor * Factor

Factor * Factor Factor * Covariate Covariate * Covariate

Format for writing a model with two explanatory variables

 $\begin{aligned} Response &= \beta_o^+ \beta_{V1} V I + \beta_{V2} V 2 + \beta_{V1 \times V2} V I \times V 2 + \varepsilon_{Normal} \\ \text{The interactive term is written as the product of two component variables } \beta_{V1 \times V2} V I \times V 2 \\ \text{Verbal statement: The effect of V1 on the response variable depends on V2} \\ \text{Write the Fixed factor } \times \text{Fixed factor GLM, calculate df, fill out the Source df table} \\ \text{df total} &= ntot-1 & \text{df } V I \times V 2 = \text{df}(V I) \times \text{df}(V 2) \end{aligned}$

4. Does oxygen consumption VO_2 depend on salinity (100% 75% and 50% seawater) in two species of limpet (*Acmea digitalis* and *A. scabra*)? Eight measurements at 3 different salinities in each of two species ntot = 48. Data from Sokal and Rohlf (1995).

Response variable with	symbol	
Explanatory variable	Symbol	Categorical or Ratio scale
Model		
df		

Interpret the interactive effect (state this in words)

http://www.mun.ca/biology/schneider/b4605/LNotes/Pt4/Ch13_1.pdf

http://www.mun.ca/biology/schneider/b4605/GLMMworkshop/Data/Limpets.csv

Source	df
	42

GLM with two fixed explanatory variables

Factor * Factor 2nd example ->Factor * Covariate (aka ANCOVA) Covariate * Covariate

5. Does inversion heterozygosity (*Hzyg*) change with elevation above sea level (*Hsl*), in 2 species of *Drosophila* (SP = *D. persimilis* or *D. pseudoobscura*). Data are from Dobzhansky (1948) as reported in Brussard (1984). One measurement in each species at 7 different elevations.

Model

df _____

Complete the Source df table. Interpret the interactive effect (state it in words)

http://www.mun.ca/biology/schneider/b4605/LNotes/Pt4/Ch14_1.pdf

http://www.mun.ca/biology/schneider/b4605/GLMMworkshop/Data/Brussard.csv

	1
Source	df
	10

GLM with two fixed explanatory variables

•

JesFactor * Factor
Factor * Covariate3rd example -> Covariate * Covariate (aka multiple regression)

6. Data from Snedecor and Cochrane 1980 Table 17.2.1

Does plant available phosphorus content of corn (ppm) from 17 Iowa soils at 20 deg C depend on inorganic and organic phosphorus in the soil?

Model

df

Complete the Source df table. Interpret the interactive effect (state it in words)

http://www.mun.ca/biology/schneider/b4605/LNotes/Pt4/Ch12_1.pdf

http://www.mun.ca/biology/schneider/b4605/GLMMworkshop/Data/PAvailable.csv

Source	df
	13

GLM - Random Effects. The first solution to heterogeneous errors.

The GLM assumes a normal error with fixed (constant) variance = ε_{Normal}

Grouped data usually violate this assumption.-- > heterogeneous residuals

Examples: Paired data, clustered data, blocked data

Examples: Repeated measures (*e.g.* 3 samples at one time), longitudinal data (3 samples in sequence) To capture this heterogeneity, we introduce a random effect variable Z with random coefficients τ (tau).

 $Y = \mu_o + \tau_Z Z + \varepsilon_{Normal} \qquad \qquad \mu_o = \text{random intercept} \\ \tau_Z Z = \text{random effect}$

GLM Single Random Factor

10 The first published ANOVA table was Example 38 in Fisher (1925) *Statistical Methods for Research Workers*. "In an experiment on the accuracy of counting soil bacteria, a soil sample was divided into four parallel samples and from each of these after dilution seven plates were inoculated. The number of colonies on each plate is shown below in example 12 (Table 41). Do the results from the four samples agree within the limits of random sampling? In other words, is the whole set of 28 values homogeneous, or is there any perceptible intraclass correlation?"

Table 42	Degrees of	Sum of	Mean	F-ratio	\mathbb{R}^2	Likelihood Ratio
	Freedom	Squares	Square			
Between Classes (Soil s	sample) 3	1446	1			
Within Classes (Error)	24	94.96				
Assign a symbol to the	response variable _	and explana	tory variable	;		
Using the notation show	wn above, write the	model (use μ and τ)				
Compute both mean sq	uares (= SS/df) and j	place them in the Al	NOVA table			
Compute the ratio of th	e two means squares	s (the F-ratio) and p	lace it in the f	table		
Compute the explained	variance $R^2 = Betw$	een class SS/SS _{total}	=			
Do the 4 samples devia	te from random sam	pling? To find out	we calculate	the likelihoo	od ratio.	
$LR = (1 - R^{\bar{2}})^{-n/2} =$						
Likelihood Ratio tes	st: Compare the F-ra	tio to the 5% p-valu	e of the F-dis	stribution		
The 5% probability	for the F-distribution	n (excel code) is:	FINV(0.05,	(3,24) = 3.00	09	
Do the results from	the four samples agr	ee within the limits	of random sa	ampling?		
http://www.mun.ca/	biology/schneider/b	4605/GLMMworksl	<u>10p/Data/Fisl</u>	herEx38.csv		

Nested - Random within Random Crossed - Random × Random

$Y = \mu_o + \Sigma \tau_Z Z + \varepsilon_{Normal}$ $\Sigma \tau_Z Z = \text{sum of random effects of random variable } Z$

11. Winglength of 12 mosquitos (3 cages, 4 flies per cage). The left wing of each fly was measured twice.

Source	df	SS	MS	F	>	р
Cage	2	665.68	332.84	1.74		0.23
Fly⊂Cage	9	1720.68	191.19	147.07		< 0.0001
Error	12	15.62	1.3017			
Total	23	2401.97				

ANOVA table Table 10.1 in Sokal and Rohlf (1995).

Write the model from the Source and df columns in the ANOVA table

Show how each df was calculated: 2 =_____ 9 =_____

23 = _____ 12 = _____

Note that the Cage F-ratio was not calculated with respect to the MS error. The Cage F-ratio was calculated from a random factor, Fly(Cage). Why? Stay tuned.

http://www.mun.ca/biology/schneider/b4605/LNotes/Pt4/Ch13_6.pdf

http://www.mun.ca/biology/schneider/b4605/GLMMworkshop/Data/FisherEx38.csv

GLM with two random factors

2nd example - - >

Nested - Random within Random Crossed - Random × Random

mple 38) shows a nested design.	Plate		Samp	ole	
		I	II		IV
	1	72	74	78	69
	2	69	72	74	67
	3	63	70	70	66
	4	59	69	58	64
	5	59	66	58	62
n plate was inoculated with subsamples	6	53	58	56	58
al samples (Classes). Consequently, we	7	51	52	56	54
) as a random factor with 4 levels and					
m factor, plate.	Total	426	461	450	440
planatory variables and write a two way	Mean	60.86	65.86	64.29	62.86
an interaction term.					

12. Fisher's Table 42 (Exa

It ignores the fact that each from each of the four initia can treat class (i.e. sample)

cross it with another rando

Assign symbols to both exp random effects GLM with

Symbols

Model

Complete the Source and df columns of the ANOVA table for this model.

The correct model is a saturated model, the error term will have zero degrees of freedom. We'll use this in the next session.

Random or Fixed? The definition of fixed versus random differs among text books.

Definition from Quinn and Keough (2002)

There are two types of categorical predictor variables in linear models. The most common type is a <u>fixed factor</u>, where all the levels of the factor (*i.e.* all the groups or treatments) that are of interest are included in the analysis. We cannot extrapolate our statistical conclusions beyond these specific levels to other groups or treatments not in the study. If we repeated the study, we would usually use the same levels of the fixed factor again. Linear models based on fixed categorical predictor variables (fixed factors) are termed fixed effects models (or Model 1 ANOVAs). Fixed effect models are analogous to linear regression models where X is assumed to be fixed. The other type of factor is a <u>random factor</u>, where we are only using a random selection of all the possible levels (or groups) of the factor and we usually wish to make inferences about all the possible groups from our sample of groups. If we repeated the study, we would usually take another sample of groups from the population of possible groups.

Drawing a branching tree diagram is not a reliable way to distinguish crossed from nested designs.

Why? Because a crossed design can be drawn as a branching tree.

The reliable way to distinguish crossed and nested designs is to write all of the two way tables and fill in the sample size in each cell of each table. If all (or most) of the cells have at least one sample then the two variables are crossed. If not the two factors are nested. For three factors there are three pairs and so three two-way tables.

GLMM with two explanatory variables 2 examples Fixed + Random

 $Fixed \times Random$

The GLM assumes a normal error with fixed (constant) variance $= \varepsilon_{Normal}$ Grouped data often violate this assumption.-- > heterogeneous residuals

Paired data, clustered data, blocked data

Repeated measures (e.g. 3 samples at once), longitudinal data (3 sequential samples)

To capture this heterogeneity, we write a General Linear Mixed Model, which has both fixed and random effects.

$$Y = \beta_o + \Sigma \beta_X X + \Sigma \tau_Z Z + \varepsilon_{Normal}$$

$$\Sigma \beta_X X = \text{sum of fixed effects}$$

$$\Sigma \tau_Z Z = \text{sum of heterogeneous random effects}$$

$$\varepsilon_{Normal} = \text{homogeneous normal errors}$$

GLMM with two explanatory variables	First example	Random(Fixed)	W	heat Y	ields	
13. Wheat Yields from Cornell (1971)		Treatment	Pot		Plant number	
			Number	1	2	3
		None	1	20.6	22.3	19.8
		None	2	23.4	21.9	22.8
I nree pots were assigned to each treatment.		None	3	21.8	20.6	21.3
The two way (Det × Treatment) table new has 12 calls		Straw	1	13.6	13.9	14.2
The two-way (1 of ~ Treatment) table now ha	15 12 00115.	Straw	2	13.7	14.5	13.8
There is 1 sample in each cell		Straw	3	12.9	13.1	13.4
		Straw + PO4	1	14.8	14.6	14.9
When we do the cross test the design appears	s to be crossed.	Straw + PO4	2	14.3	13.9	13.5
		Straw + PO4	3	14.4	13.8	14.1
However, there were 12 pots in the experime	nt, not 3.	Straw+PO4+lime	1	14.1	13.8	14.3
		Straw+PO4+lime	2	14.0	13.9	14.2
		Straw+PO4+lime	3	14.4	14.1	13.6

$\underline{http://www.mun.ca/biology/schneider/b4605/GLMMworkshop/Data/WheatYield.csv}$

Recode the Pot variable to show that there are 12 pots.	Treatment	Pot		Plant number		
1		Number	1	2	3	
The two-way (Pot \times Treatment) table now has 36 cells.	None	1	20.6	22.3	19.8	
	None	2	23.4	21.9	22.8	
Most of the cells are empty.	None	3	21.8	20.6	21.3	
We cannot estimate Pot × Treatment.	Straw	4	13.6	13.9	14.2	
Pot is nested within treatment Pot(Treatment)	Straw	5	13.7	14.5	13.8	
Tot is nested within reachent Tot (Treatment)	Straw	6	12.9	13.1	13.4	
Carry out the cross test for Pot × Plant and Trt × Plant.	Straw + PO4	7	14.8	14.6	14.9	
, ,	Straw + PO4	8	14.3	13.9	13.5	
Now many cells?	Straw + PO4	9	14.4	13.8	14.1	
	Straw+PO4+lime	10	14.1	13.8	14.3	
How many empty cells?	Straw+PO4+lime	11	14.0	13.9	14.2	
Can Pot × Plant be estimated ? Y/N	Straw+PO4+lime	12	14.4	14.1	13.6	
Can Trt × Plant be estimated ? Y/N						

GLMM with two explanatory variables 2nd example Fixed × Random

Subject	Drug A	Drug B
1	0.7	1.9
2	-1.6	0.8
3	-0.2	1.1
4	-1.2	0.1
5	-0.1	-0.1
6	3.4	4.4
7	3.7	5.5
8	0.8	1.6
9	0.0	4.6
10	2.0	3.4

14. Sleep data (Cushny and Peebles), used by Student (W. Gossett) to introduce the *t*-test. Data are: hours of extra sleep with two drugs Hyoscyamine (Drug A) and L Hyoscine (Drug B), each administered to 10 subjects. Values reported are averages. The pairing across subject allows us to remove the effects of individual variation.

Assign a symbol to the response variable

For each explanatory variable assign a symbol and state reason for assigning it as Fixed or Random

http://www.mun.ca/biology/schneider/b4605/LNotes/Pt4/Ch13_3.pdf

http://www.mun.ca/biology/schneider/b4605/GLMMworkshop/Data/ExtraSleep.csv

Crossed or Nested?

There are only two variables, hence only one interaction term. We can see right away that this is a crossed design.