Algebraic derivation of Mendelian ratios as binomial traits

Mendelian ratios may also be obtained from the calculation of the binomial distribution of two independent traits. For two alleles at one locus, the genotype ratios are

                    1A + 1a
                    1A + 1a
_________________
                 1Aa + 1aa
    1AA + 1 Aa
_________________

    1AA + 2Aa + 1aa gives a 1 : 2 : 1 ratio

and the phenotype ratios are therefore (1AA + 2Aa) + 1 aa = (1+2) A + 1 a = 3:1


For two alleles at two loci, the genotypic and phenotypic ratios above give:

                                                                                                           1AA + 2Aa + 1aa
                                                                                                            1BB + 2Bb + 1bb
____________________________________________________________________
                                                                                             + 1AAbb + 2Aabb + 1aabb
                                              +  2AABb + 4AaBb + 2aaBb
1AABB + 2AaBB + 1aaBB                                                                                                 =  1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1                                                                            

for which the phenotypes are

1 AB      + 2 AB      + 1 aB    + 2 AB     + 4 AB    + 2 aB     + 1 Ab   + 2 Ab    + 1 ab

rearranging

(1 + 2 + 2 + 4) AB + (1 + 2) aB + (1 + 2) Ab + 1 ab gives a  9 : 3 : 3 : 1 ratio


Alternatively,

                          3A + 1a
                          3B + 1b
____________________
                       3Ab + 1ab
9AB + 3aB
____________________
9AB + 3aB + 3Ab + 1ab


HOMEWORK: Show the algebraic derivation of the Mendelian genotypic and phenotypic ratios for a trinomial trait, generated by three independent characters. Hint: Look at the pattern in the binomial genotypic ratios. Can you expand this pattern of nine terms for one with 27 ?


All figure & text material ©2025 by Steven M. Carr