Derivation of Mutation / Selection equilibrium
Consider rare, recessive, deleterious allele a     f(a) = q
          << 1   &   f(A) = p
          ~ 1 
          f(A a) =  µ
a) =  µ  mutation rate (# new mutant alleles / gamete / generation)
 mutation rate (# new mutant alleles / gamete / generation)
    
 : equilibrium between loss of a due to selection
        : equilibrium between loss of a due to selection
      
                              
                   
        & replacement of a by new mutation 
   
            change in f(a) due to  selection:  qs = -spq2
          / (1 - sq2)     [complete
          dominance model]
qs = -spq2
          / (1 - sq2)     [complete
          dominance model] 
             
        change in f(a) due to  mutation:  qµ 
        = µp
qµ 
        = µp
    
Then  
           qµ 
          +
qµ 
          +   qs 
          =  µp -  spq2 / (1 - sq2)
qs 
          =  µp -  spq2 / (1 - sq2)
      
                              
             µp 
        -  spq2       
                     [ (1 - sq2)
  µp 
        -  spq2       
                     [ (1 - sq2)   1  
        if   q << p ]
  1  
        if   q << p ] 
                              
             =  (p) (µ - sq2)
    
 ,
, 
         q = 0 = (p) (µ - s
q = 0 = (p) (µ - s 2)
2)  µ - s
  µ - s 2          [if p
2          [if p  1 ]
 1 ]  2
          =  µ
2
          =  µ 2
          =  µ / s
2
          =  µ / s =µ
                      / s )0.5
  =µ
                      / s )0.5 
