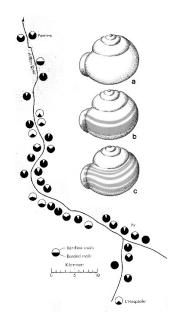
Lab Exercise #7: Genetic Drift versus Selection in Cepaea nemoralis

Cepaea nemoralis, the European Land Snail, is the classic example of the interplay of *deterministic* (natural selection) and *stochastic* (genetic drift) factors in evolution. EB Ford's studies on this species are the part of the foundation of Ecological Genetics.


C. nemoralis is widespread in western Europe and southern Great Britain. Related species occur in North America, including Newfoundland. *C. nemoralis* is phenotypically polymorphic: individuals have dark or light shells, and from zero to five bands [below, left]. The polymorphism is controlled genetically: *Dark* alleles are dominant to *Light*, and *Un-banded* alleles are dominant to *Banded*.

Cepaea, like Biston betularia moths, is subject to visual predation by birds, based on **crypsis**. Song thrushes spot the snails, pick them up, and drop them on flat rocks ("thrush anvils"). The shells break open, and the birds eat the contents. Local predation patterns can be measured by examining the phenotypes of broken shells at the anvils. The incidence of the various shell types varies inversely according to habitat type and degree of crypsis. Broken light shells are more common at anvils in dark "brown" backgrounds [e.g., bare soil], and less common in light "green" backgrounds [e.g., grasslands]. Broken Un-banded shells are more common at anvils in "high contrast" habitats [e.g., short grass fields], and are less common on "low contrast" habitats [e.g., deep-shadow woodlands]. Much of the variation among colonies seems to be correlated with these two environmental variables. Snails that stand out visually are preferentially eaten by thrushes and show up more frequently as broken shells at the anvils: the more cryptic do not show up as frequently.

Genetic drift also plays a role. The snails occur in colonies of tens to thousands of individuals. Colonies are well-separated micro-geographically, and gene flow between colonies is severely limited by the creatures' sedentary habits. Different shell phenotypes typically co-exist in most colonies, and their frequencies vary greatly over short distances, both along and on either side of rivers [below, right], not always in accordance with expectations from crypsis. There is greater genetic variation (measured as variance in shell patterns) among *smaller* colonies than *larger*, consistent with the expectations of genetic drift. Some small colonies may even become 'fixed' for 'lost' for the 'wrong', non-cryptic shell pattern.

This exercise models the behavior of alleles in larger and smaller populations, with greater or lesser degrees intensity of selection, and thus the interplay of **stochastic** Genetic Drift and **deterministic** Natural Selection in determining the degree of genetic polymorphism in natural populations.

MatLab simulation of Natural Selection / Genetic Drift in finite populations

Each snail colony is a *finite* population of **N** individuals, with a total of **2N** alleles. The *Bnd* locus has two alleles **A** & **B** (<u>B</u>anded). **B** is genetically **recessive**. The colonies are in a *uniform*, *low-contrast environment*, in which *Banded* snails are at a selective *disadvantage*, **s** = (1-W2). [We count *live snails*, not *broken* shells]. **WriFish** traces **q** = f(**B**) over time. Recall that

$$f(AA) = (1-q)^2$$
 $f(AB) = 2(q)(1-q)$ $f(BB) = q^2$ The variance between generations is $\sigma_q^2 = (q)(1-q)/2N$.

- (1) The deterministic expectation of **B** subject to negative selection is that f(**B**) → **0.0**. In any finite population size **N**, the allele frequency is subject to stochastic genetic drift over time. We ask: Under what combinations of **s** and **N** can a disadvantageous **B** allele drift stochastically to f(**B**) → **1.0**.
- (2) For a new **Brown** allele arising in a green snail colony on *brown, bare soil,* **B** will be at a selective *advantage*. We ask the inverse question: does an *advantageous* **B** allele necessarily increase to f(**B**) → **1.0**? Under what combinations of **s** and **N**?
- (3) For (2) above, consider selection with semi-dominance such that W0 = 1, W1 = 1 0.5 s, and W2 = 1 s

WriFish Model

The **MatLab** program **WriFish** generates **two** alleles **A** or **B**, according to $\mathbf{q} = \mathbf{f}(\mathbf{B})$. The two alleles define an individual with genotype **AA**, **AB**, or **BB**. The appropriate fitness **W0**, **W1**, or **W2** is applied as a *probability of survival* of the newly-generated individual genotype. If the individual does not '*survive*', two new alleles are sampled, and the fitness test applied until one survives: this individual is added to the population. This "*Draw & Replace*" is repeated until the sample reaches **N** individuals, in each of **N**_{pop} populations. **N** remains constant between pre- & post selection populations. **WriFish** corresponds to a "*soft selection*" model of Natural Selection.

Instructions

1) Click on the program WriFish.m. This will open the program in MatLab.

Click the green Run button [center, top].

A new screen will appear, with a box "Model Parameters" in the upper left corner.

The screen will ask for the following. Run the scenarios in **Part 3**:

Initial value of q = f(B) in the range 0.0 < q < 1.0

Population size N for any value ≤ 100,000

Number of populations Npop, > 1 ~ 1,000

Number of generations Ngen (see Suggestion below)

Fitness values W0, W1, & W2 for AA, AB, & BB:

B is recessive to A; set W0 = W1 = 1 for AA & AB, set W2= 1 - 2 for BB according to the scenario

2) Run the program by clicking on yellow "Run Evolution" in the lower left corner

The program will plot f(B) = q, for each population, for the model parameters.

For each of the following scenarios, run 10 [or more] simulations simultaneously

The trajectories of f(B) are plotted for all populations in the simulation.

Counts of populations that go to $\mathbf{q} = \mathbf{0}$ or $\mathbf{1}$ (loss & fixation of \mathbf{B}) are reported in the left column.

Scenarios

3) Run the scenarios on the last page of this handout. Start the simulations at q = 0.5, then repeat for 0.1 & 0.9

Record the count of populations that go to fixation (q = 1) or loss (q = 0)

Note the approximate range of generations required for loss / fixation

Copy & Save **JPG** graphs to a drawing program or **WORD** for your discussion:

Label graphs with starting parameters: suggested format q.1 N10000 s.1.jpg

Suggestion: Run Npop = 100 or 1,000 to get a more accurate ratio of fixation & loss;

repeat with **Npop = 10 or 100**, each repeated **10** times to see the variance.

1.	Over time, in which colony size are allele frequencies more variable <i>among populations</i> ? Why?
2.	Is a species that comprises <i>multiple small populations</i> more variable than one composed of a <i>few large</i>
	populations? Explain.
3.	Can deleterious alleles go to fixation in a population? Under what circumstances? Explain.
4.	What is the <i>ultimate fate</i> of alleles, even in 'large' populations? Explain.
5. F	For what values of ${\bf s}$ and ${\bf N}$ do the effects of selection and drift achieve an approximate equilibrium of ${\bf \Delta q}$?

q = 0.1									
N= s=1-W2	0.1	0.01	0.001	0.0001	0	-0.0001	-0.001	-0.01	-0.1
10									
100									
1,000									

q = 0.5									
N= s=1-W2	0.1	0.01	0.001	0.0001	0	-0.0001	-0.001	-0.01	-0.1
10									
100									
1,000									

q = 0.9									
N= s=1-W2	0.1	0.01	0.001	0.0001	0	-0.0001	-0.001	-0.01	-0.1
10									
100									
1,000									

N= s=1-W2	0.1	0.01	0.001	0.0001	0	-0.0001	-0.001	-0.01	-0.1
10									
100									
1,000									