Quadratic solution of the Migration / Selection equilibrium

To solve qi  = tqi2 - (m + t)(qi) + mqm


Recall the quadratic formula: 0 = [-b (b2 - 4ac)] / 2a


Then, set terms of quadratic as   a = t    b = - (m + t)   c = mqm

                               
    = [ (m + t) [( (-1)2(m + t)2 - 4tmqm] ] / 2t          quadratic form

        =  [ (m + t) [m2 + t2 + 2mt - 4mt] ] / 2t              qm = 1; expand ( - (m + t) )2
 
          [ (m + t) [t2 + 2mt - 4mt] ] / 2t                      if  m < t , then m2 << t2 

          [ (m + t) [t2 + (t2)(2m/t - 4m/t)] ] / 2t            create common t2 term

          [ (m + t)  (t) [1 + 2m/t - 4m / t] ] / 2t              factor out t2 term as t

          [ (m + t)  (t)(1 + m/t - 2m/t) ] / 2t                   apply approximation
                                                                                        (1 x)     ( 1  (x/2))
                                                                                        because (1 + x/2)2  =  1 + x + (x/4)2
                                                                                                                         (1 + x) 
   iff x << 1
                                                                                                                       that is (- m / t) << 1

For which the negative root, if  t > 0, is


      (m + t) - (t + m - 2m) / 2t                        t & m terms cancel [ pretty !]

      2m / 2t  =  (m / t)                                if qm = 1 as in standard model, & m < t


Text material © 2025 by Steven M. Carr