Quadratic solution of the migration equation

To solve qi  = tqi2 - (m + t)qi + mqm


Recall the quadratic formula: 0 = [-b (b2 - 4ac)] / 2a

        & note that, if x << 1, then  (1x)   1  (x/2)
                                            since   (1 + y/2)2  =  1 + y + (y/4)   (1 + y)     if y << 1

Then, if m << t    and   a = t    b = -(m+t)   c = mqm


      (m + t) [m2 + t2 + 2mt - 4mtqm] / 2t

          (m + t) [t2 + t2(2m/t - 4mqm/t)] / 2t

          (m + t)  s[1 + 2m/t - 4mqm/t] / 2t

          (m + t)  t[1 + m/t - 2mqm/t] / 2t

For which the negative root, if  t > 0, is


      (m + t) - [t + m - 2mqm] / 2t

      2mqm / 2t  =  (m / t)(qm)



Text material © 2004 by Steven M. Carr