Quadratic
solution of the migration equation
To solve qi
= tqi2 - (m + t)qi
+ mqm
Recall the quadratic formula:
0
= [-b (b2
- 4ac)] / 2a
& note that, if x << 1, then (1x)
1 (x/2)
since (1 + y/2)2 = 1 + y + (y/4)2
(1 + y) if y << 1
Then, if m << t
and a = t b =
-(m+t)
c = mqm
(m + t) [m2
+ t2 + 2mt - 4mtqm] / 2t
(m + t) [t2
+ t2(2m/t - 4mqm/t)] / 2t
(m + t) s[1
+ 2m/t - 4mqm/t] / 2t
(m + t) t[1 +
m/t
- 2mqm/t] / 2t
For which the negative
root, if t > 0, is
(m + t) - [t + m - 2mqm] / 2t
2mqm / 2t = (m
/
t)(qm)
Text material © 2004 by Steven M. Carr