Publications

Hurley, E.P., and B.E. Staveley, in preparation. TER94, the Drosophila homologue of the ALS-related VCP gene, influences lifespan and leads to a decline in motor function.

Hasan, A., and B.E. Staveley, in preparation. Altered parkin and Bcl-2 expression suppresses Drp1 gain and loss of function phenotypes in Drosophila.

Follett, A.M., and B.E. Staveley, in preparation. The fruitful future of CisD2 in Drosophila models of ageing.

Gamble, A.R., and B.E. Staveley, in preparation. A role for nardilysin in mitochondrial homeostasis and ageing.

Hasan, A., and B.E. Staveley, under review. Altered expression of the transcription regulator Rbf with mitochondrial dynamics genes, Buffy, Debcl and Drp1.

Keats, M.F., and B.E. Staveley, 2022. Neural-Gal4 and control UAS-responding transgenes in longevity assays in Drosophila. Drosophila Information Services 105: (accepted, in press).

Hurley, E.P., and B.E. Staveley, 2021. Inhibition of Ref(2)P, the Drosophila homologue of the p62/SQSTM1 gene, increases lifespan and leads to a decline in motor function. BioMed Central Research Notes 14: 53. DOI: 10.1186/s13104-021-05462-6 (6 pages).

Chavoshi Jolfaei, M.S., and B.E. Staveley, 2020. GFP-RNAi expression in dopaminergic neurons can reduce lifespan in Drosophila melanogaster. Drosophila Information Services 103:68-73.

Hurley, E.P., and B.E. Staveley, 2020. Inhibition of Ref(2)P, the Drosophila homologue of the p62/SQSTM1 gene, increases lifespan and leads to a decline in motor function. Research Square 62994.  https://www.researchsquare.com/article/rs-62994/v1.

Hurley, E.P., and B.E. Staveley, 2020. TER94, the Drosophila homologue of the ALS-related VCP gene, influences lifespan and leads to a decline in motor function. Research Square 60498.  https://www.researchsquare.com/article/rs-60498/v1.

Hasan, A., and B.E. Staveley, 2020. Alteration of Drp1 expression in Drosophila models of Parkinson Disease. Research Square 39652. https://www.researchsquare.com/article/rs-39652/v1.

Hasan, A., and B.E. Staveley, 2019.  Altered expression of Rbf in the Drosophila eye alleviates the characteristic foxo phenotype. Drosophila Information Services 102: 65-68.

Hackett, J.D., and B.E. Staveley, 2017.  Expression of UAS-lacZ[4-2-4b] under the control of elav-Gal4 significantly reduces lifespan in Drosophila melanogasterDrosophila Information Services 100: 116-118.

M'Angale, P.G., and B.E. Staveley, 2017. A loss-of-function Pdxk model of Parkinson Disease in Drosophila can be suppressed by Buffy. BioMed Central Research Notes 10: 205. DOI: 10.1186/s13104-017-2526-8 (9 pages).

M'Angale, P.G., and B.E. Staveley, 2017. Overexpression of Buffy enhances the loss of parkin and suppresses the loss of Pink1 phenotypes in Drosophila. Genome 60(3): 241-247. DOI: 10.1139/gen-2016-0165.

M'Angale, P.G., and B.E. Staveley, 2017. Bax-inhibitor-1 knockdown phenotypes are suppressed by Buffy and exacerbate degeneration in a Drosophila model of Parkinson disease. PeerJ 5:e2974. DOI: 10.7717/peerj.2974 (19 pages).

M'Angale, P.G., and B.E. Staveley, 2017. Inhibition of Mitochondrial Calcium Uptake 1 in Drosophila neurons. Genetics and Molecular Research 16(1): gmr16019436. DOI: 10.4238/gmr156019436 (11 pages).

Merzetti, E.M., L.A. Dolomount, and B.E. Staveley, 2017. The FBXO7 homologue nutcracker and binding partner PI31 in Drosophila melanogaster models of Parkinson Disease. Genome 60(1): 46-54. DOI: 10.1139/gen-2016-0087.

M'Angale, P.G., and B.E. Staveley, 2017. The HtrA2 Drosophila model of Parkinson Disease is suppressed by the pro-survival Bcl-2 Buffy. Genome 60(1): 1-7. DOI: 10.1139/gen-2016-0069.

M'Angale, P.G., and B.E. Staveley, 2016. Co-expression of Buffy with Buffy-RNAi produces an intermediate phenotype in the Drosophila eye. Drosophila Information Services 99: 14-16.

M'Angale, P.G., and B.E. Staveley, 2016. Inhibition of the Lifeguard homologue CG3814 in Drosophila melanogaster. Genetics and Molecular Research 15(4): gmr15049290.DOI: 10.4238/gmr15049290 (11 pages).

M'Angale, P.G., and B.E. Staveley, 2016. The inhibition of CG2076, the GHITM homologue in neurons of Drosophila melanogaster can be rescued by Buffy. Journal of RNAi and Gene Silencing 12: 521-527.

M'Angale, P.G., and B.E. Staveley, 2016. A loss of porin model of Parkinson disease in Drosophila is suppressed by Buffy. Journal of Biomedical Science 23: 84. DOI: 10.1186/s12929-016-0300-1 (9 pages).

Merzetti, E.M., and B.E. Staveley, 2016. Identification of potential PARIS homologs in Drosophila melanogaster. Genetics and Molecular Research 15(4): DOI: gmr15048934. DOI: 10.4238/gmr15048934 (12 pages).

M'Angale, P.G., and B.E. Staveley, 2016. Inhibition of autophagy genes, Atg6 and Pi3K59F, in Drosophila models of Parkinson Disease. Genetics and Molecular Research 15(4): gmr15048953. DOI: 10.4238/gmr15048953 (13 pages).

M'Angale, P.G., and B.E. Staveley, 2016. Bcl-2 homologue Debcl enhances α-synuclein-induced phenotypes in Drosophila. PeerJ 4: e2461. DOI: 10.7717/peerj.2461 (17 pages).

Merzetti, E.M., and B.E. Staveley, 2016. Altered expression of CG5961, a putative Drosophila melanogaster homologue of FBXO9, provides a new model of Parkinson disease. Genetics and Molecular Research 15(2): gmr.15028579. DOI: 10.4238/gmr.15028579 (10 pages).

M'Angale, P.G., and B.E. Staveley, 2016. The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in Drosophila. BioMed Central Neuroscience 17(1):24. DOI: 10.1186/s12868-016-0261-z (8 pages).

Slade, J.D., and B.E. Staveley, 2016. Extended longevity and survivorship during amino-acid starvation in a Drosophila Sir2 mutant heterozygote. Genome 57(5): 311-318. DOI: 10.1139/gen-2015-0213.

Slade, J.D., and B.E. Staveley, 2016. Manipulation of components that control feeding behavior in Drosophila melanogaster increases sensitivity to amino-acid starvation. Genetics and Molecular Research 15 (1): gmr.15017489. DOI: 10.4238/gmr.15017489 (12 pages).

Slade, J.D., and B.E. Staveley, 2016. Enhanced survival of Drosophila Akt1 hypomorphs during amino-acid starvation requires foxo. Genome 57(2): 87-93. DOI: 10.1139/gen-2015-0113. Epub November 20, 2015.

Chavoshi, M.A., and B.E. Staveley, 2016. Inhibition of foxo and minibrain in dopaminergic neurons can model aspects of Parkinson Disease in Drosophila melanogaster. Advances in Parkinson’s Disease 5(1): 1-6. DOI: 10.4236/apd.2015.51001.

Merzetti, E.M., and B.E. Staveley, 2015. spargel, the PGC-1α homologue, in models of Parkinson Disease in Drosophila melanogaster. BioMed Central Neuroscience 16: 70 (8 pages). DOI: 10.1186/s12868-015-0210-2.

Slade, F.A., and B.E. Staveley, 2015. arm-Gal4 inheritance influences development and lifespan in Drosophila melanogaster. Genetics and Molecular Research 14(4): 12788-12796. DOI: 10.4238/2015.October.19.22.

Todd, A.M., and B.E. Staveley, 2015. Pink1 rescues Gal4-induced developmental defects in the drosophila eye. Advances in Parkinson's Disease 4(3): 43-48. DOI: 10.4236/apd.2015.43006.

Slade, J.D., and B.E. Staveley, 2015. Compensatory growth in Drosophila Akt1 mutants. BioMed Central Research Notes 8: 77. DOI: 10.1186/s13104-015-1032-0 (10 pages).

Staveley B.E., 2015. Drosophila Models of Parkinson Disease. In Movement Disorders: Genetics and Models, Second Edition, Elsevier Inc. Mark S. LeDoux (Ed.) (invited book chapter, 345-354).

Sheaves, D.W., and B.E. Staveley, 2014. A novel GMR-Gal4 insertion produces a rough eye phenotype. Drosophila Information Services 97: 141-143.

Lipsett, D.B., and B.E. Staveley, 2014. A blueberry extract supplemented diet partially re-stores [alpha]-synuclein-dependent lifespan loss and developmental defects in Drosophila. Advances in Parkinson's Disease 3(2): 3-9. DOI: 10.4236/apd.2014.32002.

McGuire, M.K., A.D.S. Grant, and B.E. Staveley, 2013. Chronic exposure to tunicamycin during development has little effect upon the eyes of GMR-Gal4 UAS-lacZ males. Drosophila Information Services 96: 153-155.

Merzetti, E.M., and B.E. Staveley, 2013. Mitochondrial dynamics in degenerative disease and disease models. Neuroscience Discovery 1: 8 DOI : http://dx.doi.org/10.7243/2052-6946-1-8 (12 pages).

Todd, A.M., and B.E. Staveley, 2013. Pink1 and parkin demonstrate multifaceted roles when co-expressed with Foxo. Advances in Parkinson's Disease 2(1): 5-10. DOI: 10.4236/apd.2013.21002.

Merzetti, E.M., C.B. Connors, and B.E. Staveley, 2013. Thinking inside the box: Drosophila F-box protein models of human disease. Journal of Biology 3: 7-14.

M'Angale, P.G., and B.E. Staveley, 2012. Effects of alpha-synuclein expression in the developing Drosophila eye. Drosophila Information Services 95: 85-89.

Todd, A.M., and B.E. Staveley, 2012. Expression of Pink1 with alpha-synuclein in the dopaminergic neurons of Drosophila leads to increases in both lifespan and healthspan. Genetics and Molecular Research 11:1497-502.

Staveley B.E., 2012. Successes of Modelling Parkinson Disease in Drosophila, in “Mechanisms in Parkinson's Disease - Models and Treatments, Juliana Dushanova (Ed.), ISBN: 978-953-307-876-2 (Chapter 12: 233-250).

Woodman, P.N., A.M.Todd, and B.E. Staveley, 2011. Eyer: Automated counting of ommatidia using image processing techniques. Drosophila Information Services 94: 142-145.

Mawhinney, R.M.S., and B.E. Staveley, 2011. Expression of GFP can influence aging and climbing ability in Drosophila. Genetics and Molecular Research 10(1): 494-505. DOI: 10.4238/vol10-1gmr1023. First report of negative effects of GFP in Drosophila.

Todd, A.M., and B.E. Staveley, 2010. Co-expression of [alpha]-synuclein in Drosophila dopaminergic neurons does not affect lifespan reduction resulting from PI3K overexpression. Drosophila Information Services 93: 21-23.

MacDonald, J.M., J.N. Moores, and B.E. Staveley, 2008. Microchaetae density is not greatly influenced by the overexpression of akt. Drosophila Information Services 91: 108-110.

Todd, A.M., and B.E. Staveley, 2008. Pink1 suppresses alpha-synuclein induced phenotypes in a Drosophila model of Parkinson disease. Genome 51(12): 1040-1046. DOI: 10.1139/G08-085.

Moores, J.N., S. Roy, D.W. Nicholson, and B.E. Staveley, 2008. Huntingtin interacting protein 1 can regulate neurogenesis in Drosophila. European Journal of Neuroscience 28(3): 599-609. DOI: 10.1111/j.1460-9568.2008.06359.x. Initial report of Hip1 in Drosophila and first demonstration of role for Hip1 in neurogenesis in any organism.

Kramer, J.M., J.D. Slade, and B.E. Staveley, 2008. foxo is required for resistance to amino acid starvation in Drosophila. Genome 51(8): 668-672. DOI: 10.1139/G08-047.

Haywood, A.F.M., and B.E. Staveley, 2006. Mutant alpha-synuclein-induced degeneration is reduced by parkin in a fly model of Parkinson's disease. Genome 49(5): 505-510. DOI: 10.1139/g06-011.

Todd, A.M., and B.E. Staveley, 2004. Novel assay and analysis for measuring climbing ability in Drosophila. Drosophila Information Services 87: 101-107.

Haywood, A.F.M., and B.E. Staveley, 2004. parkin counteracts symptoms in a Drosophila model of Parkinson's disease. BioMed Central Neuroscience 5: 14 (12 pages). DOI: 10.1186/1471-2202-5-14. First report of parkin gene expression preventing syndrome in animal model of PD. *Highly Accessed Designation.

Kramer, J.M., J.T. Davidge, J.M. Lockyer, and B.E. Staveley, 2003.Expression of Drosophila foxo regulates growth and can phenocopy starvation. BioMed Central Developmental Biology 3: 5 (14 pages). DOI: 10.1186/1471-213X-3-5. First report of foxo in Drosophila. *Highly Accessed Designation.

Kramer, J.M., and B.E. Staveley, 2003. GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genetics and Molecular Research 2(1): 43-47. First report of the toxic effects of Gal4 in Drosophila.

Staveley, B.E., L. Ruel, et al., 1998. Genetic analysis of the PKB/Akt cell survival pathway in Drosophila. Current Biology 8: 599-602.

Binari, R.C., B.E. Staveley, et al., 1997. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124: 2623-2632.

Staveley, B.E., T.R. Heslip, R.B. Hodgetts, and J.B. Bell, 1995. Protected P element termini suggest a role for IRBP in transposase-induced gap repair in Drosophila melanogaster. Genetics 139: 1321-1329.

Staveley, B.E., R.B. Hodgetts, S.L. O'Keefe, and J.B. Bell, 1994. Targeting of an 'enhancer trap' to vestigial. Developmental Biology 165: 290-293. DOI: 10.1006/dbio.1994.1254.

Staveley, B.E., A.J. Hilliker, and J.P. Phillips, 1991. Genetic organization of the cSOD microregion of Drosophila melanogaster. Genome 34: 279-282.

Staveley, B.E., J.P. Phillips, and A.J. Hilliker, 1990. Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome 33: 867-872.